These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 2454961)

  • 1. Capsaicin-induced neuronal degeneration: silver impregnation of cell bodies, axons, and terminals in the central nervous system of the adult rat.
    Ritter S; Dinh TT
    J Comp Neurol; 1988 May; 271(1):79-90. PubMed ID: 2454961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-related changes in capsaicin-induced degeneration in rat brain.
    Ritter S; Dinh TT
    J Comp Neurol; 1992 Apr; 318(1):103-16. PubMed ID: 1583153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capsaicin-induced neuronal degeneration in the brain and retina of preweanling rats.
    Ritter S; Dinh TT
    J Comp Neurol; 1990 Jun; 296(3):447-61. PubMed ID: 2358547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prior optic nerve transection reduces capsaicin-induced degeneration in rat subcortical visual structures.
    Ritter S; Dinh TT
    J Comp Neurol; 1991 Jun; 308(1):79-90. PubMed ID: 1714924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticity of the serotonergic innervation of the dorsal horn of the rat spinal cord following neonatal capsaicin treatment.
    Marlier L; Poulat P; Rajaofetra N; Sandillon F; Privat A
    J Neurosci Res; 1992 Feb; 31(2):346-58. PubMed ID: 1374131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion.
    Kalia M; Mesulam MM
    J Comp Neurol; 1980 Sep; 193(2):435-65. PubMed ID: 7440777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trauma-induced Golgi-like staining of neurons: a new approach to neuronal organization and response to injury.
    van den Pol AN; Gallyas F
    J Comp Neurol; 1990 Jun; 296(4):654-73. PubMed ID: 1694192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Projections of nucleus caudalis and spinal cord to brainstem and diencephalon in the hedgehog (Erinaceus europaeus and Paraechinus aethiopicus): a degeneration study.
    Ring G; Ganchrow D
    J Comp Neurol; 1983 May; 216(2):132-51. PubMed ID: 6863599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transganglionic degeneration of capsaicin-sensitive C-fiber primary afferent terminals.
    Jancsó G; Lawson SN
    Neuroscience; 1990; 39(2):501-11. PubMed ID: 2087270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The action of capsaicin on primary afferent central terminals in the superficial dorsal horn of newborn mice.
    Hiura A; López Villalobos E; Ishizuka H
    Arch Histol Cytol; 1990 Oct; 53(4):455-66. PubMed ID: 2268478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early morphological changes of primary afferent neurons and their processes in newborn mice after treatment with capsaicin.
    Hiura A; Ishizuka H
    Exp Brain Res; 1994; 101(2):203-15. PubMed ID: 7843309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Final report on the safety assessment of capsicum annuum extract, capsicum annuum fruit extract, capsicum annuum resin, capsicum annuum fruit powder, capsicum frutescens fruit, capsicum frutescens fruit extract, capsicum frutescens resin, and capsaicin.
    Int J Toxicol; 2007; 26 Suppl 1():3-106. PubMed ID: 17365137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of serotonergic immunoreactive fibers in the brain of 5,6-dihydroxytryptamine treated rat.
    Ueda S; Kawata M
    J Hirnforsch; 1994; 35(1):159-80. PubMed ID: 8021452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of the spinocervicothalamic pathway in the rat.
    Giesler GJ; Björkeland M; Xu Q; Grant G
    J Comp Neurol; 1988 Feb; 268(2):223-33. PubMed ID: 3360986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat.
    Holstege G
    J Comp Neurol; 1987 Jun; 260(1):98-126. PubMed ID: 3496365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of preproenkephalin mRNA in the rat brain and spinal cord by in situ hybridization.
    Harlan RE; Shivers BD; Romano GJ; Howells RD; Pfaff DW
    J Comp Neurol; 1987 Apr; 258(2):159-84. PubMed ID: 3584538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neonatal capsaicin treatment induces invasion of the substantia gelatinosa by the terminal arborizations of hair follicle afferents in the rat dorsal horn.
    Shortland P; Molander C; Woolf CJ; Fitzgerald M
    J Comp Neurol; 1990 Jun; 296(1):23-31. PubMed ID: 2358528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The motor nuclei of the glossopharyngeal-vagal and the accessorius nerves in the rat.
    Matesz C; Székely G
    Acta Biol Hung; 1983; 34(2-3):215-29. PubMed ID: 6198828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triphenyl phosphite-induced neuropathy in the avian forebrain: a silver impregnation study of the visual and auditory systems of the Japanese quail.
    Varghese RG; Bursian SJ; Tobias C; Tanaka D
    Neurotoxicology; 1995; 16(1):105-13. PubMed ID: 7603630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pituitary adenylate cyclase activating polypeptide-immunoreactive sensory neurons innervate rat adrenal medulla.
    Dun NJ; Tang H; Dun SL; Huang R; Dun EC; Wakade AR
    Brain Res; 1996 Apr; 716(1-2):11-21. PubMed ID: 8738215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.