These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 24549623)

  • 41. Finding aptamers and small ribozymes in unexpected places.
    Matylla-Kulinska K; Boots JL; Zimmermann B; Schroeder R
    Wiley Interdiscip Rev RNA; 2012; 3(1):73-91. PubMed ID: 21853532
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Generation and selection of ribozyme variants with potential application in protein engineering and synthetic biology.
    Balke D; Wichert C; Appel B; Müller S
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3389-99. PubMed ID: 24496571
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression.
    Ausländer S; Ketzer P; Hartig JS
    Mol Biosyst; 2010 May; 6(5):807-14. PubMed ID: 20567766
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dual genetic selection of synthetic riboswitches in Escherichia coli.
    Nomura Y; Yokobayashi Y
    Methods Mol Biol; 2014; 1111():131-40. PubMed ID: 24549616
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Engineered allosteric ribozymes that sense the bacterial second messenger cyclic diguanosyl 5'-monophosphate.
    Gu H; Furukawa K; Breaker RR
    Anal Chem; 2012 Jun; 84(11):4935-41. PubMed ID: 22519888
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sequence elements distal to the ligand binding pocket modulate the efficiency of a synthetic riboswitch.
    Weigand JE; Gottstein-Schmidtke SR; Demolli S; Groher F; Duchardt-Ferner E; Wöhnert J; Suess B
    Chembiochem; 2014 Jul; 15(11):1627-37. PubMed ID: 24954073
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aptamer-Mediated Control of Polyadenylation for Gene Expression Regulation in Mammalian Cells.
    Spöring M; Boneberg R; Hartig JS
    ACS Synth Biol; 2020 Nov; 9(11):3008-3018. PubMed ID: 33108164
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Engineering and In Vivo Applications of Riboswitches.
    Hallberg ZF; Su Y; Kitto RZ; Hammond MC
    Annu Rev Biochem; 2017 Jun; 86():515-539. PubMed ID: 28375743
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A convolutional neural network for the prediction and forward design of ribozyme-based gene-control elements.
    Schmidt CM; Smolke CD
    Elife; 2021 Apr; 10():. PubMed ID: 33860764
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Controlling mammalian gene expression by allosteric hepatitis delta virus ribozymes.
    Nomura Y; Zhou L; Miu A; Yokobayashi Y
    ACS Synth Biol; 2013 Dec; 2(12):684-9. PubMed ID: 23697539
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pseudoknot preorganization of the preQ1 class I riboswitch.
    Santner T; Rieder U; Kreutz C; Micura R
    J Am Chem Soc; 2012 Jul; 134(29):11928-31. PubMed ID: 22775200
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Designing optogenetically controlled RNA for regulating biological systems.
    You M; Jaffrey SR
    Ann N Y Acad Sci; 2015 Sep; 1352(1):13-9. PubMed ID: 25758022
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rational design of artificial ON-riboswitches.
    Ogawa A
    Methods Mol Biol; 2014; 1111():165-81. PubMed ID: 24549619
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Control of alphavirus-based gene expression using engineered riboswitches.
    Bell CL; Yu D; Smolke CD; Geall AJ; Beard CW; Mason PW
    Virology; 2015 Sep; 483():302-11. PubMed ID: 26005949
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rational Re-engineering of a Transcriptional Silencing PreQ1 Riboswitch.
    Wu MC; Lowe PT; Robinson CJ; Vincent HA; Dixon N; Leigh J; Micklefield J
    J Am Chem Soc; 2015 Jul; 137(28):9015-21. PubMed ID: 26106809
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computational design of allosteric ribozymes as molecular biosensors.
    Penchovsky R
    Biotechnol Adv; 2014; 32(5):1015-27. PubMed ID: 24877999
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design principles for ligand-sensing, conformation-switching ribozymes.
    Chen X; Ellington AD
    PLoS Comput Biol; 2009 Dec; 5(12):e1000620. PubMed ID: 20041206
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Homogeneous assays using aptamers.
    Sassolas A; Blum LJ; Leca-Bouvier BD
    Analyst; 2011 Jan; 136(2):257-74. PubMed ID: 20949139
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expanding the toolbox of synthetic riboswitches with guanine-dependent aptazymes.
    Stifel J; Spöring M; Hartig JS
    Synth Biol (Oxf); 2019; 4(1):ysy022. PubMed ID: 32995528
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanism for gene control by a natural allosteric group I ribozyme.
    Chen AG; Sudarsan N; Breaker RR
    RNA; 2011 Nov; 17(11):1967-72. PubMed ID: 21960486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.