These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 24549625)

  • 21. Modular riboswitch toolsets for synthetic genetic control in diverse bacterial species.
    Robinson CJ; Vincent HA; Wu MC; Lowe PT; Dunstan MS; Leys D; Micklefield J
    J Am Chem Soc; 2014 Jul; 136(30):10615-24. PubMed ID: 24971878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Broad resistance due to plasmid-mediated AmpC beta-lactamases in clinical isolates of Escherichia coli.
    Odeh R; Kelkar S; Hujer AM; Bonomo RA; Schreckenberger PC; Quinn JP
    Clin Infect Dis; 2002 Jul; 35(2):140-5. PubMed ID: 12087519
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Expression of high-level cephalosporinase due to mutation in the AmpC attenuator of a clinical Escherichia coli strain].
    Guan XZ; Liu YN; Luo YP; She DY; Lu SJ; Zhou G; Chen LA
    Zhonghua Yi Xue Za Zhi; 2006 Mar; 86(9):600-4. PubMed ID: 16681904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aptazyme-Based Riboswitches and Logic Gates in Mammalian Cells.
    Nomura Y; Yokobayashi Y
    Methods Mol Biol; 2021; 2323():213-220. PubMed ID: 34086283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of plasmid-mediated quinolone resistance associated with qnrA in an Escherichia coli clinical isolate producing CTX-M-9 beta-lactamase in Japan.
    Saito R; Kumita W; Sato K; Chida T; Okamura N; Moriya K; Koike K
    Int J Antimicrob Agents; 2007 May; 29(5):600-2. PubMed ID: 17239568
    [No Abstract]   [Full Text] [Related]  

  • 26. [Study on the molecular mechanism of transferable multiple-antibiotic resistance in extended-spectrum beta-lactamase-producing clinical isolates].
    Lu J; Tang YC; Wu BQ; Zhang KX; Zhang TT; Bi XG; Zhu JX; Tan SQ
    Zhonghua Jie He He Hu Xi Za Zhi; 2003 Apr; 26(4):199-202. PubMed ID: 12901824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emergence of CTX-M beta-lactamase-producing Enterobacteriaceae in Portugal: report of an Escherichia coli isolate harbouring blaCTX-M-14.
    Machado E; Coque TM; Cantón R; Sousa JC; Peixe L
    Clin Microbiol Infect; 2004 Aug; 10(8):755-7. PubMed ID: 15301680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Antibiotic resistance and distribution of plasmid-encoded beta- lactamases among agents of traveller's diarrhea].
    Baumgärtner MG
    Zentralbl Bakteriol Mikrobiol Hyg A; 1986 May; 261(3):350-61. PubMed ID: 2943094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada.
    Boyd DA; Tyler S; Christianson S; McGeer A; Muller MP; Willey BM; Bryce E; Gardam M; Nordmann P; Mulvey MR
    Antimicrob Agents Chemother; 2004 Oct; 48(10):3758-64. PubMed ID: 15388431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of CTX-M-14 and TEM-52 extended-spectrum beta-lactamases in fecal Escherichia coli isolates of captive ostrich in Portugal.
    Carneiro C; Araújo C; Gonçalves A; Vinué L; Somalo S; Ruiz E; Uliyakina I; Rodrigues J; Igrejas G; Poeta P; Torres C
    Foodborne Pathog Dis; 2010 Aug; 7(8):991-4. PubMed ID: 20367084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual-selection for evolution of in vivo functional aptazymes as riboswitch parts.
    Goler JA; Carothers JM; Keasling JD
    Methods Mol Biol; 2014; 1111():221-35. PubMed ID: 24549623
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering riboswitch in L. major: From prediction to conceptualization.
    Bejugam PR; Singh S
    Int J Biol Macromol; 2018 Aug; 115():98-105. PubMed ID: 29655887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of synthetic riboswitch in cell-free protein expression systems.
    Chushak Y; Harbaugh S; Zimlich K; Alfred B; Chávez J; Kelley-Loughnane N
    RNA Biol; 2021 Nov; 18(11):1727-1738. PubMed ID: 33427029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aptazyme-based riboswitches and logic gates in mammalian cells.
    Nomura Y; Yokobayashi Y
    Methods Mol Biol; 2015; 1316():141-8. PubMed ID: 25967059
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theophylline-inducible riboswitch accurately regulates protein expression at low level in Escherichia coli.
    Kamiura R; Toya Y; Matsuda F; Shimizu H
    Biotechnol Lett; 2019 Jul; 41(6-7):743-751. PubMed ID: 30953309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering an inducible gene expression system for Bacillus subtilis from a strong constitutive promoter and a theophylline-activated synthetic riboswitch.
    Cui W; Han L; Cheng J; Liu Z; Zhou L; Guo J; Zhou Z
    Microb Cell Fact; 2016 Nov; 15(1):199. PubMed ID: 27876054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TEM-1 plasmids in the community.
    Thomson CJ; Shanahan PM; Amyes SG
    Lancet; 1994 Apr; 343(8902):921. PubMed ID: 7908384
    [No Abstract]   [Full Text] [Related]  

  • 38. Control of alphavirus-based gene expression using engineered riboswitches.
    Bell CL; Yu D; Smolke CD; Geall AJ; Beard CW; Mason PW
    Virology; 2015 Sep; 483():302-11. PubMed ID: 26005949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The E. coli beta-lactamase attenuator mediates growth rate-dependent regulation.
    Jaurin B; Grundström T; Edlund T; Normark S
    Nature; 1981 Mar; 290(5803):221-5. PubMed ID: 7010184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Systematic Comparison and Rational Design of Theophylline Riboswitches for Effective Gene Repression.
    Wang X; Fang C; Wang Y; Shi X; Yu F; Xiong J; Chou SH; He J
    Microbiol Spectr; 2023 Feb; 11(1):e0275222. PubMed ID: 36688639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.