These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 24549701)
1. Genetically modified Schwann cells producing glial cell line-derived neurotrophic factor inhibit neuronal apoptosis in rat spinal cord injury. Liu G; Wang X; Shao G; Liu Q Mol Med Rep; 2014 Apr; 9(4):1305-12. PubMed ID: 24549701 [TBL] [Abstract][Full Text] [Related]
2. Olfactory ensheathing cells genetically modified to secrete GDNF to promote spinal cord repair. Cao L; Liu L; Chen ZY; Wang LM; Ye JL; Qiu HY; Lu CL; He C Brain; 2004 Mar; 127(Pt 3):535-49. PubMed ID: 14691064 [TBL] [Abstract][Full Text] [Related]
3. Poly (D,L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord. Hurtado A; Moon LD; Maquet V; Blits B; Jérôme R; Oudega M Biomaterials; 2006 Jan; 27(3):430-42. PubMed ID: 16102815 [TBL] [Abstract][Full Text] [Related]
4. Glial cell line-derived neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and enhance myelination after spinal cord injury. Iannotti C; Li H; Yan P; Lu X; Wirthlin L; Xu XM Exp Neurol; 2003 Oct; 183(2):379-93. PubMed ID: 14552879 [TBL] [Abstract][Full Text] [Related]
5. Nerve conduit filled with GDNF gene-modified Schwann cells enhances regeneration of the peripheral nerve. Li Q; Ping P; Jiang H; Liu K Microsurgery; 2006; 26(2):116-21. PubMed ID: 16538638 [TBL] [Abstract][Full Text] [Related]
6. Cograft of neural stem cells and schwann cells overexpressing TrkC and neurotrophin-3 respectively after rat spinal cord transection. Wang JM; Zeng YS; Wu JL; Li Y; Teng YD Biomaterials; 2011 Oct; 32(30):7454-68. PubMed ID: 21783247 [TBL] [Abstract][Full Text] [Related]
7. Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury. Papastefanaki F; Chen J; Lavdas AA; Thomaidou D; Schachner M; Matsas R Brain; 2007 Aug; 130(Pt 8):2159-74. PubMed ID: 17626035 [TBL] [Abstract][Full Text] [Related]
9. GDNF Schwann cells in hydrogel scaffolds promote regional axon regeneration, remyelination and functional improvement after spinal cord transection in rats. Chen BK; Madigan NN; Hakim JS; Dadsetan M; McMahon SS; Yaszemski MJ; Windebank AJ J Tissue Eng Regen Med; 2018 Jan; 12(1):e398-e407. PubMed ID: 28296347 [TBL] [Abstract][Full Text] [Related]
10. The protective effects of resveratrol on Schwann cells with toxicity induced by ethanol in vitro. Yuan H; Zhang J; Liu H; Li Z Neurochem Int; 2013 Sep; 63(3):146-53. PubMed ID: 23770283 [TBL] [Abstract][Full Text] [Related]
11. The importance of transgene and cell type on the regeneration of adult retinal ganglion cell axons within reconstituted bridging grafts. Hu Y; Arulpragasam A; Plant GW; Hendriks WT; Cui Q; Harvey AR Exp Neurol; 2007 Oct; 207(2):314-28. PubMed ID: 17689533 [TBL] [Abstract][Full Text] [Related]
12. Combination of grafted Schwann cells and lentiviral-mediated prevention of glial scar formation improve recovery of spinal cord injured rats. Do-Thi A; Perrin FE; Desclaux M; Saillour P; Amar L; Privat A; Mallet J J Chem Neuroanat; 2016 Oct; 76(Pt A):48-60. PubMed ID: 26744118 [TBL] [Abstract][Full Text] [Related]
13. Functional and histological improvement of the injured spinal cord following transplantation of Schwann cells transfected with NRG1 gene. Zhang J; Zhao F; Wu G; Li Y; Jin X Anat Rec (Hoboken); 2010 Nov; 293(11):1933-46. PubMed ID: 20734425 [TBL] [Abstract][Full Text] [Related]
14. Gene transfer of glial cell line-derived neurotrophic factor promotes functional recovery following spinal cord contusion. Tai MH; Cheng H; Wu JP; Liu YL; Lin PR; Kuo JS; Tseng CJ; Tzeng SF Exp Neurol; 2003 Oct; 183(2):508-15. PubMed ID: 14552891 [TBL] [Abstract][Full Text] [Related]
15. Regeneration of Propriospinal Axons in Rat Transected Spinal Cord Injury through a Growth-Promoting Pathway Constructed by Schwann Cells Overexpressing GDNF. Du X; Zhang S; Khabbaz A; Cohen KL; Zhang Y; Chakraborty S; Smith GM; Wang H; Yadav AP; Liu N; Deng L Cells; 2024 Jul; 13(13):. PubMed ID: 38995011 [TBL] [Abstract][Full Text] [Related]
16. Adenoviral vector carrying glial cell-derived neurotrophic factor for direct gene therapy in comparison with human umbilical cord blood cell-mediated therapy of spinal cord injury in rat. Mukhamedshina YO; Shaymardanova GF; Garanina ЕЕ; Salafutdinov II; Rizvanov АА; Islamov RR; Chelyshev YA Spinal Cord; 2016 May; 54(5):347-59. PubMed ID: 26415641 [TBL] [Abstract][Full Text] [Related]
17. Human umbilical cord blood-derived CD34+ cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors. Kao CH; Chen SH; Chio CC; Lin MT Shock; 2008 Jan; 29(1):49-55. PubMed ID: 17666954 [TBL] [Abstract][Full Text] [Related]
18. GDNF-enhanced axonal regeneration and myelination following spinal cord injury is mediated by primary effects on neurons. Zhang L; Ma Z; Smith GM; Wen X; Pressman Y; Wood PM; Xu XM Glia; 2009 Aug; 57(11):1178-91. PubMed ID: 19170182 [TBL] [Abstract][Full Text] [Related]
19. Promoting survival, migration, and integration of transplanted Schwann cells by over-expressing polysialic acid. Luo J; Bo X; Wu D; Yeh J; Richardson PM; Zhang Y Glia; 2011 Mar; 59(3):424-34. PubMed ID: 21264949 [TBL] [Abstract][Full Text] [Related]