These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1179 related articles for article (PubMed ID: 24549716)
1. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Overgaard J; Kearney MR; Hoffmann AA Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716 [TBL] [Abstract][Full Text] [Related]
2. Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude? Overgaard J; Kristensen TN; Mitchell KA; Hoffmann AA Am Nat; 2011 Oct; 178 Suppl 1():S80-96. PubMed ID: 21956094 [TBL] [Abstract][Full Text] [Related]
3. No patterns in thermal plasticity along a latitudinal gradient in Drosophila simulans from eastern Australia. van Heerwaarden B; Lee RF; Overgaard J; Sgrò CM J Evol Biol; 2014 Nov; 27(11):2541-53. PubMed ID: 25262984 [TBL] [Abstract][Full Text] [Related]
4. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. MacLean HJ; Sørensen JG; Kristensen TN; Loeschcke V; Beedholm K; Kellermann V; Overgaard J Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180548. PubMed ID: 31203763 [TBL] [Abstract][Full Text] [Related]
5. No inbreeding depression for low temperature developmental acclimation across multiple Drosophila species. Kristensen TN; Loeschcke V; Bilde T; Hoffmann AA; Sgró C; Noreikienė K; Ondrésik M; Bechsgaard JS Evolution; 2011 Nov; 65(11):3195-201. PubMed ID: 22023585 [TBL] [Abstract][Full Text] [Related]
6. Physiological climatic limits in Drosophila: patterns and implications. Hoffmann AA J Exp Biol; 2010 Mar; 213(6):870-80. PubMed ID: 20190112 [TBL] [Abstract][Full Text] [Related]
7. Gross mismatch between thermal tolerances and environmental temperatures in a tropical freshwater snail: climate warming and evolutionary implications. Polgar G; Khang TF; Chua T; Marshall DJ J Therm Biol; 2015 Jan; 47():99-108. PubMed ID: 25526660 [TBL] [Abstract][Full Text] [Related]
8. Insect overwintering in a changing climate. Bale JS; Hayward SA J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123 [TBL] [Abstract][Full Text] [Related]
9. Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard. Pontes-da-Silva E; Magnusson WE; Sinervo B; Caetano GH; Miles DB; Colli GR; Diele-Viegas LM; Fenker J; Santos JC; Werneck FP J Therm Biol; 2018 Apr; 73():50-60. PubMed ID: 29549991 [TBL] [Abstract][Full Text] [Related]
10. Thermal limitation of performance and biogeography in a free-ranging ectotherm: insights from accelerometry. Gannon R; Taylor MD; Suthers IM; Gray CA; van der Meulen DE; Smith JA; Payne NL J Exp Biol; 2014 Sep; 217(Pt 17):3033-7. PubMed ID: 24948630 [TBL] [Abstract][Full Text] [Related]
11. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming. Rosa R; Lopes AR; Pimentel M; Faleiro F; Baptista M; Trübenbach K; Narciso L; Dionísio G; Pegado MR; Repolho T; Calado R; Diniz M Glob Chang Biol; 2014 Oct; 20(10):3068-79. PubMed ID: 24771544 [TBL] [Abstract][Full Text] [Related]
12. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus. Caldwell AJ; While GM; Beeton NJ; Wapstra E J Therm Biol; 2015 Aug; 52():14-23. PubMed ID: 26267494 [TBL] [Abstract][Full Text] [Related]
13. Intraspecific variation in thermal tolerance and acclimation capacity in brook trout (Salvelinus fontinalis): physiological implications for climate change. Stitt BC; Burness G; Burgomaster KA; Currie S; McDermid JL; Wilson CC Physiol Biochem Zool; 2014; 87(1):15-29. PubMed ID: 24457918 [TBL] [Abstract][Full Text] [Related]
14. Niche evolution and thermal adaptation in the temperate species Drosophila americana. Sillero N; Reis M; Vieira CP; Vieira J; Morales-Hojas R J Evol Biol; 2014 Aug; 27(8):1549-61. PubMed ID: 24835376 [TBL] [Abstract][Full Text] [Related]
15. Assessing the relative importance of environmental effects, carry-over effects and species differences in thermal stress resistance: a comparison of Drosophilids across field and laboratory generations. Schiffer M; Hangartner S; Hoffmann AA J Exp Biol; 2013 Oct; 216(Pt 20):3790-8. PubMed ID: 23821714 [TBL] [Abstract][Full Text] [Related]
16. Thermal plasticity in Drosophila melanogaster populations from eastern Australia: quantitative traits to transcripts. Clemson AS; Sgrò CM; Telonis-Scott M J Evol Biol; 2016 Dec; 29(12):2447-2463. PubMed ID: 27542565 [TBL] [Abstract][Full Text] [Related]
17. Thermal tolerance patterns across latitude and elevation. Sunday J; Bennett JM; Calosi P; Clusella-Trullas S; Gravel S; Hargreaves AL; Leiva FP; Verberk WCEP; Olalla-Tárraga MÁ; Morales-Castilla I Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20190036. PubMed ID: 31203755 [TBL] [Abstract][Full Text] [Related]
18. The intrinsic growth rate as a predictor of population viability under climate warming. Amarasekare P; Coutinho RM J Anim Ecol; 2013 Nov; 82(6):1240-53. PubMed ID: 23926903 [TBL] [Abstract][Full Text] [Related]
19. Does thermal history influence the tolerance of temperate gorgonians to future warming? Linares C; Cebrian E; Kipson S; Garrabou J Mar Environ Res; 2013 Aug; 89():45-52. PubMed ID: 23735816 [TBL] [Abstract][Full Text] [Related]
20. Cetacean range and climate in the eastern North Atlantic: future predictions and implications for conservation. Lambert E; Pierce GJ; Hall K; Brereton T; Dunn TE; Wall D; Jepson PD; Deaville R; MacLeod CD Glob Chang Biol; 2014 Jun; 20(6):1782-93. PubMed ID: 24677422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]