These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
48. Linking transcriptional responses to organismal tolerance reveals mechanisms of thermal sensitivity in a mesothermal endangered fish. Komoroske LM; Connon RE; Jeffries KM; Fangue NA Mol Ecol; 2015 Oct; 24(19):4960-81. PubMed ID: 26339983 [TBL] [Abstract][Full Text] [Related]
49. Latitudinal clines in heat tolerance, protein synthesis rate and transcript level of a candidate gene in Drosophila melanogaster. Cockerell FE; Sgrò CM; McKechnie SW J Insect Physiol; 2014 Jan; 60():136-44. PubMed ID: 24333150 [TBL] [Abstract][Full Text] [Related]
50. Contrasting environments shape thermal physiology across the spatial range of the sandhopper Talorchestia capensis. Baldanzi S; Weidberg NF; Fusi M; Cannicci S; McQuaid CD; Porri F Oecologia; 2015 Dec; 179(4):1067-78. PubMed ID: 26232091 [TBL] [Abstract][Full Text] [Related]
51. Direct impacts of climatic warming on heat stress in endothermic species: seabirds as bioindicators of changing thermoregulatory constraints. Oswald SA; Arnold JM Integr Zool; 2012 Jun; 7(2):121-36. PubMed ID: 22691196 [TBL] [Abstract][Full Text] [Related]
52. Under the weather?-The direct effects of climate warming on a threatened desert lizard are mediated by their activity phase and burrow system. Moore D; Stow A; Kearney MR J Anim Ecol; 2018 May; 87(3):660-671. PubMed ID: 29446081 [TBL] [Abstract][Full Text] [Related]
53. Effect of warming with temperature oscillations on a low-latitude aphid, Aphis craccivora. Chen CY; Chiu MC; Kuo MH Bull Entomol Res; 2013 Aug; 103(4):406-13. PubMed ID: 23448233 [TBL] [Abstract][Full Text] [Related]
54. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Renaudeau D; Collin A; Yahav S; de Basilio V; Gourdine JL; Collier RJ Animal; 2012 May; 6(5):707-28. PubMed ID: 22558920 [TBL] [Abstract][Full Text] [Related]
55. Male sterility at extreme temperatures: a significant but neglected phenomenon for understanding Drosophila climatic adaptations. David JR; Araripe LO; Chakir M; Legout H; Lemos B; Pétavy G; Rohmer C; Joly D; Moreteau B J Evol Biol; 2005 Jul; 18(4):838-46. PubMed ID: 16033555 [TBL] [Abstract][Full Text] [Related]
56. Intraspecific variation in thermal tolerance differs between tropical and temperate fishes. Nati JJH; Svendsen MBS; Marras S; Killen SS; Steffensen JF; McKenzie DJ; Domenici P Sci Rep; 2021 Oct; 11(1):21272. PubMed ID: 34711864 [TBL] [Abstract][Full Text] [Related]
57. How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in Kellermann V; van Heerwaarden B; Sgrò CM Proc Biol Sci; 2017 May; 284(1855):. PubMed ID: 28539515 [TBL] [Abstract][Full Text] [Related]
58. A Drosophila laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future. Schou MF; Kristensen TN; Kellermann V; Schlötterer C; Loeschcke V J Evol Biol; 2014 Sep; 27(9):1859-68. PubMed ID: 24925446 [TBL] [Abstract][Full Text] [Related]
59. Temperature preference across life stages and acclimation temperatures investigated in four species of Drosophila. MacLean HJ; Overgaard J; Kristensen TN; Lyster C; Hessner L; Olsvig E; Sørensen JG J Therm Biol; 2019 Dec; 86():102428. PubMed ID: 31789224 [TBL] [Abstract][Full Text] [Related]
60. Climate heterogeneity modulates impact of warming on tropical insects. Bonebrake TC; Deutsch CA Ecology; 2012 Mar; 93(3):449-55. PubMed ID: 22624199 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]