These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24549732)

  • 21. Increasing the capacity of parvovirus-retentive membranes: performance of the Viresolve Prefilter.
    Bolton GR; Spector S; Lacasse D
    Biotechnol Appl Biochem; 2006 Jan; 43(Pt 1):55-63. PubMed ID: 16207176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane fouling in sterile filtration of recombinant human growth hormone.
    Maa YF; Hsu CC
    Biotechnol Bioeng; 1996 May; 50(3):319-28. PubMed ID: 18626959
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Membrane filtration for virus removal.
    Brandwein H; Aranha-Creado H
    Dev Biol (Basel); 2000; 102():157-63. PubMed ID: 10794103
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Virus filtration of high-concentration monoclonal antibody solutions.
    Marques BF; Roush DJ; Göklen KE
    Biotechnol Prog; 2009; 25(2):483-91. PubMed ID: 19353736
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of filtration on the presence of particulate and oxycodone content of injections prepared from crushed OxyContin® tablets.
    Patel P; Patel RP; Brandon S; McLean S; Bruno R; de Graaff B
    Curr Drug Saf; 2012 Jul; 7(3):218-24. PubMed ID: 22950988
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding the freezing of biopharmaceuticals: first-principle modeling of the process and evaluation of its effect on product quality.
    Radmanovic N; Serno T; Joerg S; Germershaus O
    J Pharm Sci; 2013 Aug; 102(8):2495-507. PubMed ID: 23775776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Meeting report--workshop on virus removal by filtration: trends and new developments.
    Willkommen H; Blümel J; Brorson K; Chen D; Chen Q; Gröner A; Kreil TR; Robertson JS; Ruffing M; Ruiz S
    PDA J Pharm Sci Technol; 2013; 67(2):98-104. PubMed ID: 23569071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Particle contamination of parenteralia and in-line filtration of proteinaceous drugs.
    Werner BP; Winter G
    Int J Pharm; 2015 Dec; 496(2):250-67. PubMed ID: 26556624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prevention of stirring-induced microparticle formation in monoclonal antibody solutions.
    Ishikawa T; Kobayashi N; Osawa C; Sawa E; Wakamatsu K
    Biol Pharm Bull; 2010; 33(6):1043-6. PubMed ID: 20522974
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanistic failure mode investigation and resolution of parvovirus retentive filters.
    LaCasse D; Lute S; Fiadeiro M; Basha J; Stork M; Brorson K; Godavarti R; Gallo C
    Biotechnol Prog; 2016 Jul; 32(4):959-70. PubMed ID: 27160325
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of viral filtration performance of monoclonal antibodies based on biophysical properties of feed.
    Rayfield WJ; Roush DJ; Chmielowski RA; Tugcu N; Barakat S; Cheung JK
    Biotechnol Prog; 2015; 31(3):765-74. PubMed ID: 25919945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of protein fouling on nanoparticle capture within the Viresolve® Pro and Viresolve® NFP virus removal membranes.
    Fallahianbijan F; Giglia S; Carbrello C; Bell D; Zydney AL
    Biotechnol Bioeng; 2019 Sep; 116(9):2285-2291. PubMed ID: 31081123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of organic and inorganic flocculants on physical-chemical properties of biomass and membrane-fouling rate.
    Ji J; Qiu J; Wai N; Wong FS; Li Y
    Water Res; 2010 Mar; 44(5):1627-35. PubMed ID: 19954810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of xenotropic murine leukemia virus by nanocellulose based filter paper.
    Asper M; Hanrieder T; Quellmalz A; Mihranyan A
    Biologicals; 2015 Nov; 43(6):452-6. PubMed ID: 26328471
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In line final filters for removing particles from amphotericin B infusions.
    Huber RC; Riffkin C
    Am J Hosp Pharm; 1975 Feb; 32(2):173-6. PubMed ID: 237416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Achieving high mass-throughput of therapeutic proteins through parvovirus retentive filters.
    Bolton GR; Basha J; Lacasse DP
    Biotechnol Prog; 2010; 26(6):1671-7. PubMed ID: 20859931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Viral clearance using disposable systems in monoclonal antibody commercial downstream processing.
    Zhou JX; Solamo F; Hong T; Shearer M; Tressel T
    Biotechnol Bioeng; 2008 Jun; 100(3):488-96. PubMed ID: 18438883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expanding Bedside Filtration-A Powerful Tool to Protect Patients From Protein Aggregates.
    Werner BP; Winter G
    J Pharm Sci; 2018 Nov; 107(11):2775-2788. PubMed ID: 30059660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of fouling mechanisms of virus filters during the filtration of protein solutions using a high throughput filtration screening device.
    Bieberbach M; Kosiol P; Seay A; Bennecke M; Hansmann B; Hepbildikler S; Thom V
    Biotechnol Prog; 2019 Jul; 35(4):e2776. PubMed ID: 30629862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increasing parvovirus filter throughput of monoclonal antibodies using ion exchange membrane adsorptive pre-filtration.
    Brown A; Bechtel C; Bill J; Liu H; Liu J; McDonald D; Pai S; Radhamohan A; Renslow R; Thayer B; Yohe S; Dowd C
    Biotechnol Bioeng; 2010 Jul; 106(4):627-37. PubMed ID: 20229510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.