BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 24549735)

  • 1. In vitro-in vivo extrapolation method to predict human renal clearance of drugs.
    Kunze A; Huwyler J; Poller B; Gutmann H; Camenisch G
    J Pharm Sci; 2014 Mar; 103(3):994-1001. PubMed ID: 24549735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 3: comparative assessement of prediction methods of human clearance.
    Ring BJ; Chien JY; Adkison KK; Jones HM; Rowland M; Jones RD; Yates JW; Ku MS; Gibson CR; He H; Vuppugalla R; Marathe P; Fischer V; Dutta S; Sinha VK; Björnsson T; Lavé T; Poulin P
    J Pharm Sci; 2011 Oct; 100(10):4090-110. PubMed ID: 21541938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of human pharmacokinetics - renal metabolic and excretion clearance.
    Fagerholm U
    J Pharm Pharmacol; 2007 Nov; 59(11):1463-71. PubMed ID: 17976256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of total hepatic clearance by combining metabolism, transport, and permeability data in the in vitro-in vivo extrapolation methods: emphasis on an apparent fraction unbound in liver for drugs.
    Poulin P
    J Pharm Sci; 2013 Jul; 102(7):2085-95. PubMed ID: 23613473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel minimal physiologically-based model for the prediction of passive tubular reabsorption and renal excretion clearance.
    Scotcher D; Jones C; Rostami-Hodjegan A; Galetin A
    Eur J Pharm Sci; 2016 Oct; 94():59-71. PubMed ID: 27033147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative structure-pharmacokinetic relationships for the prediction of renal clearance in humans.
    Dave RA; Morris ME
    Drug Metab Dispos; 2015 Jan; 43(1):73-81. PubMed ID: 25352657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug-drug interaction involving organic anion transporter 3 in humans by in vitro uptake experiments.
    Watanabe T; Kusuhara H; Watanabe T; Debori Y; Maeda K; Kondo T; Nakayama H; Horita S; Ogilvie BW; Parkinson A; Hu Z; Sugiyama Y
    Drug Metab Dispos; 2011 Jun; 39(6):1031-8. PubMed ID: 21383204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kidney--the body's playground for drugs: an overview of renal drug handling with selected clinical correlates.
    Perri D; Ito S; Rowsell V; Shear NH
    Can J Clin Pharmacol; 2003; 10(1):17-23. PubMed ID: 12687033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a new paradigm for the efficient in vitro-in vivo extrapolation of metabolic clearance in humans from hepatocyte data.
    Poulin P; Haddad S
    J Pharm Sci; 2013 Sep; 102(9):3239-51. PubMed ID: 23494893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological modelling of renal drug clearance.
    Janků I
    Eur J Clin Pharmacol; 1993; 44(6):513-9. PubMed ID: 8405004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of LLC-PK1 kidney epithelial cells as an in vitro model for studying renal tubular reabsorption of protein drugs.
    Takakura Y; Morita T; Fujikawa M; Hayashi M; Sezaki H; Hashida M; Borchardt RT
    Pharm Res; 1995 Dec; 12(12):1968-72. PubMed ID: 8786975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Key to Opening Kidney for In Vitro-In Vivo Extrapolation Entrance in Health and Disease: Part II: Mechanistic Models and In Vitro-In Vivo Extrapolation.
    Scotcher D; Jones C; Posada M; Galetin A; Rostami-Hodjegan A
    AAPS J; 2016 Sep; 18(5):1082-1094. PubMed ID: 27506526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New IVIVE method for the prediction of total human clearance and relative elimination pathway contributions from in vitro hepatocyte and microsome data.
    Riede J; Poller B; Umehara K; Huwyler J; Camenisch G
    Eur J Pharm Sci; 2016 Apr; 86():96-102. PubMed ID: 26948853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal drug transport: a review.
    Bendayan R
    Pharmacotherapy; 1996; 16(6):971-85. PubMed ID: 8947968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Mechanistic PBPK Model to Predict Renal Clearance in Varying Stages of CKD by Incorporating Tubular Adaptation and Dynamic Passive Reabsorption.
    Huang W; Isoherranen N
    CPT Pharmacometrics Syst Pharmacol; 2020 Oct; 9(10):571-583. PubMed ID: 32977369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal clearance in drug discovery and development: molecular descriptors, drug transporters and disease state.
    Feng B; LaPerle JL; Chang G; Varma MV
    Expert Opin Drug Metab Toxicol; 2010 Aug; 6(8):939-52. PubMed ID: 20433402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ontogeny of hepatic and renal systemic clearance pathways in infants: part II.
    Alcorn J; McNamara PJ
    Clin Pharmacokinet; 2002; 41(13):1077-94. PubMed ID: 12403644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacokinetics and clearances related to renal processes.
    Garrett ER
    Int J Clin Pharmacol Biopharm; 1978 Apr; 16(4):155-72. PubMed ID: 649235
    [No Abstract]   [Full Text] [Related]  

  • 19. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 4: prediction of plasma concentration-time profiles in human from in vivo preclinical data by using the Wajima approach.
    Vuppugalla R; Marathe P; He H; Jones RD; Yates JW; Jones HM; Gibson CR; Chien JY; Ring BJ; Adkison KK; Ku MS; Fischer V; Dutta S; Sinha VK; Björnsson T; Lavé T; Poulin P
    J Pharm Sci; 2011 Oct; 100(10):4111-26. PubMed ID: 21480234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of human renal clearance from preclinical species for a diverse set of drugs that exhibit both active secretion and net reabsorption.
    Paine SW; Ménochet K; Denton R; McGinnity DF; Riley RJ
    Drug Metab Dispos; 2011 Jun; 39(6):1008-13. PubMed ID: 21357702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.