These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24549744)

  • 1. Helical substituted polyacetylene-derived fluorescent microparticles prepared by precipitation polymerization.
    Huang H; Chen C; Zhang D; Deng J; Wu Y
    Macromol Rapid Commun; 2014 May; 35(9):908-15. PubMed ID: 24549744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The first suspension polymerization for preparing optically active microparticles purely constructed from chirally helical substituted polyacetylenes.
    Zhang H; Song J; Deng J
    Macromol Rapid Commun; 2014 Jul; 35(13):1216-23. PubMed ID: 24715681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene Oxide (GO) as Stabilizer for Preparing Chirally Helical Polyacetylene/GO Hybrid Microspheres via Suspension Polymerization.
    Li J; Deng J; Li W; Pan K; Deng J
    Macromol Rapid Commun; 2017 Nov; 38(21):. PubMed ID: 28921736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral monolithic absorbent constructed by optically active helical-substituted polyacetylene and graphene oxide: preparation and chiral absorption capacity.
    Li W; Wang B; Yang W; Deng J
    Macromol Rapid Commun; 2015 Feb; 36(3):319-26. PubMed ID: 25490977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noncovalent chiral functionalization of graphene with optically active helical polymers.
    Ren C; Chen Y; Zhang H; Deng J
    Macromol Rapid Commun; 2013 Sep; 34(17):1368-74. PubMed ID: 23852622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyacetylene-type networks prepared by coordination polymerization of diethynylarenes: new type of microporous organic polymers.
    Hanková V; Slováková E; Zedník J; Vohlídal J; Sivkova R; Balcar H; Zukal A; Brus J; Sedláček J
    Macromol Rapid Commun; 2012 Jan; 33(2):158-63. PubMed ID: 22106002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microspheres consisting of optically active helical substituted polyacetylenes: preparation via suspension polymerization and their chiral recognition/release properties.
    Chen B; Song C; Luo X; Deng J; Yang W
    Macromol Rapid Commun; 2011 Dec; 32(24):1986-92. PubMed ID: 22102401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optically Active Porous Microspheres Consisting of Helical Substituted Polyacetylene Prepared by Precipitation Polymerization without Porogen and the Application in Enantioselective Crystallization.
    Chen C; Zhao B; Deng J
    ACS Macro Lett; 2015 Apr; 4(4):348-352. PubMed ID: 35596319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly twisted helical polyacetylene with morphology free from the bundle of fibrils synthesized in chiral nematic liquid crystal reaction field.
    Goh M; Kyotani M; Akagi K
    J Am Chem Soc; 2007 Jul; 129(27):8519-27. PubMed ID: 17579404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of helical polyacetylene in chiral nematic liquid crystals using crown ether type binaphthyl derivatives as chiral dopants.
    Akagi K; Guo S; Mori T; Goh M; Piao G; Kyotani M
    J Am Chem Soc; 2005 Oct; 127(42):14647-54. PubMed ID: 16231917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optically Active Janus Particles Constructed by Chiral Helical Polymers through Emulsion Polymerization Combined with Solvent Evaporation-Induced Phase Separation.
    Zhang Y; Kang L; Huang H; Deng J
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6319-6327. PubMed ID: 31939279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral porous hybrid particles constructed by helical substituted polyacetylene covalently bonded organosilica for enantioselective release.
    Liang J; Deng J
    J Mater Chem B; 2016 Oct; 4(39):6437-6445. PubMed ID: 32263452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of molecular imprinted particles prepared using precipitation polymerization in water and chloroform for fluorescent detection of nitroaromatics.
    Stringer RC; Gangopadhyay S; Grant SA
    Anal Chim Acta; 2011 Oct; 703(2):239-44. PubMed ID: 21889640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral functionalization of graphene oxide by optically active helical-substituted polyacetylene chains and its application in enantioselective crystallization.
    Li W; Liang J; Yang W; Deng J
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9790-8. PubMed ID: 24902050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of pyridine/propargyl bromide reaction and strong fluorescence enhancements of the resultant poly(propargyl pyridinium bromide).
    Zhou C; Gao Y; Chen D
    J Phys Chem B; 2012 Sep; 116(37):11552-9. PubMed ID: 22928912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual memory of enantiomeric helices in a polyacetylene induced by a single enantiomer.
    Miyagawa T; Furuko A; Maeda K; Katagiri H; Furusho Y; Yashima E
    J Am Chem Soc; 2005 Apr; 127(14):5018-9. PubMed ID: 15810826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoreversible fluorescent modulation of nanoparticles via one-step miniemulsion polymerization.
    Chen J; Zeng F; Wu S; Su J; Tong Z
    Small; 2009 Apr; 5(8):970-8. PubMed ID: 19235194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monodisperse boronate polymeric particles synthesized by a precipitation polymerization strategy: particle formation and glycoprotein response from the standpoint of the Flory-Huggins model.
    Liu J; Qu Y; Yang K; Wu Q; Shan Y; Zhang L; Liang Z; Zhang Y
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):2059-66. PubMed ID: 24422433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic Fe3O4-PS-polyacetylene composite microspheres showing chirality derived from helical substituted polyacetylene.
    Liu D; Zhang L; Li M; Yang W; Deng J
    Macromol Rapid Commun; 2012 Apr; 33(8):672-7. PubMed ID: 22328313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rational design for the directed helicity change of polyacetylene using dynamic rotaxane mobility by means of through-space chirality transfer.
    Ishiwari F; Fukasawa K; Sato T; Nakazono K; Koyama Y; Takata T
    Chemistry; 2011 Oct; 17(43):12067-75. PubMed ID: 21922578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.