BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 24549784)

  • 1. Incorporating replacement free energy of binding-site waters in molecular docking.
    Sun H; Zhao L; Peng S; Huang N
    Proteins; 2014 Sep; 82(9):1765-76. PubMed ID: 24549784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking.
    Uehara S; Tanaka S
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27886114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular docking with ligand attached water molecules.
    Lie MA; Thomsen R; Pedersen CN; Schiøtt B; Christensen MH
    J Chem Inf Model; 2011 Apr; 51(4):909-17. PubMed ID: 21452852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PSI-DOCK: towards highly efficient and accurate flexible ligand docking.
    Pei J; Wang Q; Liu Z; Li Q; Yang K; Lai L
    Proteins; 2006 Mar; 62(4):934-46. PubMed ID: 16395666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function.
    Taylor RD; Jewsbury PJ; Essex JW
    J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WScore: A Flexible and Accurate Treatment of Explicit Water Molecules in Ligand-Receptor Docking.
    Murphy RB; Repasky MP; Greenwood JR; Tubert-Brohman I; Jerome S; Annabhimoju R; Boyles NA; Schmitz CD; Abel R; Farid R; Friesner RA
    J Med Chem; 2016 May; 59(9):4364-84. PubMed ID: 27054459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization.
    Liu J; He X; Zhang JZ
    J Chem Inf Model; 2013 Jun; 53(6):1306-14. PubMed ID: 23651068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions.
    Xu X; Qiu L; Yan C; Ma Z; Grinter SZ; Zou X
    Proteins; 2017 Mar; 85(3):424-434. PubMed ID: 27802576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selecting an optimal number of binding site waters to improve virtual screening enrichments against the adenosine A2A receptor.
    Lenselink EB; Beuming T; Sherman W; van Vlijmen HW; IJzerman AP
    J Chem Inf Model; 2014 Jun; 54(6):1737-46. PubMed ID: 24835542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting fragment binding poses using a combined MCSS MM-GBSA approach.
    Haider MK; Bertrand HO; Hubbard RE
    J Chem Inf Model; 2011 May; 51(5):1092-105. PubMed ID: 21528911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Docking and free energy perturbation studies of ligand binding in the kappa opioid receptor.
    Goldfeld DA; Murphy R; Kim B; Wang L; Beuming T; Abel R; Friesner RA
    J Phys Chem B; 2015 Jan; 119(3):824-35. PubMed ID: 25395044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martí MA
    J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WaterScore: a novel method for distinguishing between bound and displaceable water molecules in the crystal structure of the binding site of protein-ligand complexes.
    García-Sosa AT; Mancera RL; Dean PM
    J Mol Model; 2003 Jun; 9(3):172-82. PubMed ID: 12756610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand-induced structural changes in TEM-1 probed by molecular dynamics and relative binding free energy calculations.
    Pimenta AC; Martins JM; Fernandes R; Moreira IS
    J Chem Inf Model; 2013 Oct; 53(10):2648-58. PubMed ID: 23991837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of Thermodynamic Properties of Bound Water Molecules.
    Yang Y; Abdallah AHA; Lill MA
    Methods Mol Biol; 2018; 1762():389-402. PubMed ID: 29594782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of protein-protein docking model structures using all-atom molecular dynamics simulations combined with the solution theory in the energy representation.
    Takemura K; Guo H; Sakuraba S; Matubayasi N; Kitao A
    J Chem Phys; 2012 Dec; 137(21):215105. PubMed ID: 23231264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 3. The free energy contribution of structural water molecules in HIV-1 protease complexes.
    Fornabaio M; Spyrakis F; Mozzarelli A; Cozzini P; Abraham DJ; Kellogg GE
    J Med Chem; 2004 Aug; 47(18):4507-16. PubMed ID: 15317462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water Mapping and Scoring Approaches to Predict the Role of Hydration Sites in the Binding Affinity of PAK1 Inhibitors.
    Biswal J; Jayaprakash P; Rayala SK; Venkatraman G; Rangasamy R; Poopandi S; Jeyakanthan J
    Comb Chem High Throughput Screen; 2022; 25(4):660-676. PubMed ID: 33687876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydration properties of ligands and drugs in protein binding sites: tightly-bound, bridging water molecules and their effects and consequences on molecular design strategies.
    García-Sosa AT
    J Chem Inf Model; 2013 Jun; 53(6):1388-405. PubMed ID: 23662606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.
    Arcon JP; Defelipe LA; Modenutti CP; López ED; Alvarez-Garcia D; Barril X; Turjanski AG; Martí MA
    J Chem Inf Model; 2017 Apr; 57(4):846-863. PubMed ID: 28318252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.