BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 24549853)

  • 1. Branching out: origins of the sea urchin larval skeleton in development and evolution.
    McIntyre DC; Lyons DC; Martik M; McClay DR
    Genesis; 2014 Mar; 52(3):173-85. PubMed ID: 24549853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton.
    Duloquin L; Lhomond G; Gache C
    Development; 2007 Jun; 134(12):2293-302. PubMed ID: 17507391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm.
    McIntyre DC; Seay NW; Croce JC; McClay DR
    Development; 2013 Dec; 140(24):4881-9. PubMed ID: 24227654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth factors and early mesoderm morphogenesis: insights from the sea urchin embryo.
    Adomako-Ankomah A; Ettensohn CA
    Genesis; 2014 Mar; 52(3):158-72. PubMed ID: 24515750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VEGF signaling activates the matrix metalloproteinases, MmpL7 and MmpL5 at the sites of active skeletal growth and MmpL7 regulates skeletal elongation.
    Morgulis M; Winter MR; Shternhell L; Gildor T; Ben-Tabou de-Leon S
    Dev Biol; 2021 May; 473():80-89. PubMed ID: 33577829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-range cell-cell signals control ectodermal patterning in the oral region of the sea urchin embryo.
    Hardin J; Armstrong N
    Dev Biol; 1997 Feb; 182(1):134-49. PubMed ID: 9073456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From larval bodies to adult body plans: patterning the development of the presumptive adult ectoderm in the sea urchin larva.
    Minsuk SB; Andrews ME; Raff RA
    Dev Genes Evol; 2005 Aug; 215(8):383-92. PubMed ID: 15834585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Late Alk4/5/7 signaling is required for anterior skeletal patterning in sea urchin embryos.
    Piacentino ML; Ramachandran J; Bradham CA
    Development; 2015 Mar; 142(5):943-52. PubMed ID: 25633352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-Seq identifies SPGs as a ventral skeletal patterning cue in sea urchins.
    Piacentino ML; Zuch DT; Fishman J; Rose S; Speranza EE; Li C; Yu J; Chung O; Ramachandran J; Ferrell P; Patel V; Reyna A; Hameeduddin H; Chaves J; Hewitt FB; Bardot E; Lee D; Core AB; Hogan JD; Keenan JL; Luo L; Coulombe-Huntington J; Blute TA; Oleinik E; Ibn-Salem J; Poustka AJ; Bradham CA
    Development; 2016 Feb; 143(4):703-14. PubMed ID: 26755701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct regulatory states control the elongation of individual skeletal rods in the sea urchin embryo.
    Tarsis K; Gildor T; Morgulis M; Ben-Tabou de-Leon S
    Dev Dyn; 2022 Aug; 251(8):1322-1339. PubMed ID: 35403290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterochronic activation of VEGF signaling and the evolution of the skeleton in echinoderm pluteus larvae.
    Morino Y; Koga H; Tachibana K; Shoguchi E; Kiyomoto M; Wada H
    Evol Dev; 2012; 14(5):428-36. PubMed ID: 22947316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of univin, a TGF-beta growth factor, requires ectoderm-ECM interaction and promotes skeletal growth in the sea urchin embryo.
    Zito F; Costa C; Sciarrino S; Poma V; Russo R; Angerer LM; Matranga V
    Dev Biol; 2003 Dec; 264(1):217-27. PubMed ID: 14623243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specification to biomineralization: following a single cell type as it constructs a skeleton.
    Lyons DC; Martik ML; Saunders LR; McClay DR
    Integr Comp Biol; 2014 Oct; 54(4):723-33. PubMed ID: 25009306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biological regulation of sea urchin larval skeletogenesis - From genes to biomineralized tissue.
    Gildor T; Winter MR; Layous M; Hijaze E; Ben-Tabou de-Leon S
    J Struct Biol; 2021 Dec; 213(4):107797. PubMed ID: 34530133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wnt signaling in the early sea urchin embryo.
    Kumburegama S; Wikramanayake AH
    Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of OTP-independent larval skeleton patterning in the direct-developing sea urchin, Heliocidaris erythrogramma.
    Zhou N; Wilson KA; Andrews ME; Kauffman JS; Raff RA
    J Exp Zool B Mol Dev Evol; 2003 Dec; 300(1):58-71. PubMed ID: 14984035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-gated sodium channel activity mediates sea urchin larval skeletal patterning through spatial regulation of Wnt5 expression.
    Thomas CF; Hawkins DY; Skidanova V; Marrujo SR; Gibson J; Ye Z; Bradham CA
    Development; 2023 May; 150(10):. PubMed ID: 37139779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational model for BMP movement in sea urchin embryos.
    van Heijster P; Hardway H; Kaper TJ; Bradham CA
    J Theor Biol; 2014 Dec; 363():277-89. PubMed ID: 25167787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.