These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 24549904)

  • 1. Nutrient resorption in shrubs growing by design, and by default in Chihuahuan Desert arroyos.
    Killingbeck K; Whitford W
    Oecologia; 2001 Aug; 128(3):351-359. PubMed ID: 24549904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Nitrogen and phosphorus contents and resorption efficiency of thirty broadleaved woody plants in Yangjifeng, Jiangxi, China.].
    Shao J; Chen XP; Li JL; Hu DD; Wang MT; Zhong QL; Cheng DL
    Ying Yong Sheng Tai Xue Bao; 2021 Apr; 32(4):1193-1200. PubMed ID: 33899387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees.
    Drenovsky RE; Koehler CE; Skelly K; Richards JH
    Oecologia; 2013 Jan; 171(1):39-50. PubMed ID: 22744742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Species-specific nitrogen resorption proficiency in legumes and nonlegumes.
    Oikawa S; Matsui Y; Oguro M; Okanishi M; Tanabe R; Tanaka T; Togashi A; Itagaki T
    J Plant Res; 2020 Sep; 133(5):639-648. PubMed ID: 32623531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biogeographic patterns of nutrient resorption from Quercus variabilis Blume leaves across China.
    Sun X; Kang H; Chen HY; Björn B; Samuel BF; Liu C
    Plant Biol (Stuttg); 2016 May; 18(3):505-13. PubMed ID: 26597338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dinitrogen-fixing Acacia species from phosphorus-impoverished soils resorb leaf phosphorus efficiently.
    He H; Bleby TM; Veneklaas EJ; Lambers H
    Plant Cell Environ; 2011 Dec; 34(12):2060-70. PubMed ID: 21819412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of symbiotic N
    Tanabe R; Miyazawa SI; Kitade O; Oikawa S
    Oecologia; 2022 Oct; 200(1-2):79-87. PubMed ID: 36114944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulated climate change decreases nutrient resorption from senescing leaves.
    Prieto I; Querejeta JI
    Glob Chang Biol; 2020 Mar; 26(3):1795-1807. PubMed ID: 31701634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation.
    Pockman WT; Sperry JS
    Am J Bot; 2000 Sep; 87(9):1287-99. PubMed ID: 10991900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Nitrogen Addition on Nitrogen Resorption in Temperate Shrublands in Northern China.
    Zhang J; Li H; Shen H; Chen Y; Fang J; Tang Z
    PLoS One; 2015; 10(6):e0130434. PubMed ID: 26086737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The failure of nitrogen and lignin control of decomposition in a North American desert.
    Schaefer D; Steinberger Y; Whitford WG
    Oecologia; 1985 Feb; 65(3):382-386. PubMed ID: 28310443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined effects of nitrogen addition and litter manipulation on nutrient resorption of Leymus chinensis in a semi-arid grassland of northern China.
    Li X; Liu J; Fan J; Ma Y; Ding S; Zhong Z; Wang D
    Plant Biol (Stuttg); 2015 Jan; 17(1):9-15. PubMed ID: 24666511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate change has only a minor impact on nutrient resorption parameters in a high-latitude peatland.
    Aerts R; Cornelissen JH; van Logtestijn RS; Callaghan TV
    Oecologia; 2007 Feb; 151(1):132-9. PubMed ID: 17063365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of an overstorey tree (Prosopis glandulosa) on associated shrubs in a savanna parkland: implications for patch dynamics.
    Barnes PW; Archer S
    Oecologia; 1996 Mar; 105(4):493-500. PubMed ID: 28307142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial variation in leaf nutrient traits of dominant desert riparian plant species in an arid inland river basin of China.
    Zhang X; Zhou J; Guan T; Cai W; Jiang L; Lai L; Gao N; Zheng Y
    Ecol Evol; 2019 Feb; 9(3):1523-1531. PubMed ID: 30805179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foliar nutrient resorption patterns of four functional plants along a precipitation gradient on the Tibetan Changtang Plateau.
    Zhao G; Shi P; Wu J; Xiong D; Zong N; Zhang X
    Ecol Evol; 2017 Sep; 7(18):7201-7212. PubMed ID: 28944011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inefficient nitrogen resorption in genets of the actinorhizal nitrogen fixing shrubComptonia peregrina: physiological ineptitude or evolutionary tradeoff?
    Killingbeck KT
    Oecologia; 1993 Jul; 94(4):542-549. PubMed ID: 28313995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative effects of fertilization on plant nutrient resorption.
    Yuan ZY; Chen HY
    Ecology; 2015 Feb; 96(2):373-80. PubMed ID: 26240859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, north China].
    Li YL; Mao W; Zhao XY; Zhang TH
    Huan Jing Ke Xue; 2010 Aug; 31(8):1716-25. PubMed ID: 21090284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Short-term responses of foliar multi-element stoichiometry and nutrient resorption of slash pine to N addition in subtropical China].
    Chen WW; Kou L; Jiang L; Gao WL; Yang H; Wang HM; Li SG
    Ying Yong Sheng Tai Xue Bao; 2017 Apr; 28(4):1094-1102. PubMed ID: 29741304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.