BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24549984)

  • 1. Specification and positioning of the anterior neuroectoderm in deuterostome embryos.
    Range R
    Genesis; 2014 Mar; 52(3):222-34. PubMed ID: 24549984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos.
    Range RC; Angerer RC; Angerer LM
    PLoS Biol; 2013; 11(1):e1001467. PubMed ID: 23335859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo.
    Range RC; Wei Z
    Development; 2016 May; 143(9):1523-33. PubMed ID: 26952978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel gene's role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the anterior-posterior Wnt signaling network that governs the establishment of the anterior neuroectoderm in sea urchin embryos.
    Khadka A; Martínez-Bartolomé M; Burr SD; Range RC
    Evodevo; 2018; 9():1. PubMed ID: 29387332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinoic acid and Wnt/beta-catenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus.
    Onai T; Lin HC; Schubert M; Koop D; Osborne PW; Alvarez S; Alvarez R; Holland ND; Holland LZ
    Dev Biol; 2009 Aug; 332(2):223-33. PubMed ID: 19497318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes.
    Holland LZ
    Dev Biol; 2002 Jan; 241(2):209-28. PubMed ID: 11784106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Canonical and non-canonical Wnt signaling pathways define the expression domains of Frizzled 5/8 and Frizzled 1/2/7 along the early anterior-posterior axis in sea urchin embryos.
    Range RC
    Dev Biol; 2018 Dec; 444(2):83-92. PubMed ID: 30332609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anterior-posterior Wnt signaling network conservation between indirect developing sea urchin and hemichordate embryos.
    Fenner JL; Newberry C; Todd C; Range RC
    Integr Comp Biol; 2024 May; ():. PubMed ID: 38769605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wnt signaling in the early sea urchin embryo.
    Kumburegama S; Wikramanayake AH
    Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biphasic role of non-canonical Wnt16 signaling during early anterior-posterior patterning and morphogenesis of the sea urchin embryo.
    Martínez-Bartolomé M; Range RC
    Development; 2019 Dec; 146(24):. PubMed ID: 31822478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The expression and distribution of Wnt and Wnt receptor mRNAs during early sea urchin development.
    Stamateris RE; Rafiq K; Ettensohn CA
    Gene Expr Patterns; 2010 Jan; 10(1):60-4. PubMed ID: 19853669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An aboral-dorsalization hypothesis for chordate origin.
    Satoh N
    Genesis; 2008 Nov; 46(11):614-22. PubMed ID: 18932262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nodal signaling and the evolution of deuterostome gastrulation.
    Chea HK; Wright CV; Swalla BJ
    Dev Dyn; 2005 Oct; 234(2):269-78. PubMed ID: 16127715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary modification of mouth position in deuterostomes.
    Christiaen L; Jaszczyszyn Y; Kerfant M; Kano S; Thermes V; Joly JS
    Semin Cell Dev Biol; 2007 Aug; 18(4):502-11. PubMed ID: 17656139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm.
    Yaguchi J; Takeda N; Inaba K; Yaguchi S
    PLoS Genet; 2016 Apr; 12(4):e1006001. PubMed ID: 27101101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinoic acid metabolizing factor xCyp26c is specifically expressed in neuroectoderm and regulates anterior neural patterning in Xenopus laevis.
    Tanibe M; Michiue T; Yukita A; Danno H; Ikuzawa M; Ishiura S; Asashima M
    Int J Dev Biol; 2008; 52(7):893-901. PubMed ID: 18956319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear beta-catenin promotes non-neural ectoderm and posterior cell fates in amphioxus embryos.
    Holland LZ; Panfilio KA; Chastain R; Schubert M; Holland ND
    Dev Dyn; 2005 Aug; 233(4):1430-43. PubMed ID: 15973712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives.
    Swalla BJ; Smith AB
    Philos Trans R Soc Lond B Biol Sci; 2008 Apr; 363(1496):1557-68. PubMed ID: 18192178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wnt/beta-catenin signaling and body plan formation in mouse embryos.
    Marikawa Y
    Semin Cell Dev Biol; 2006 Apr; 17(2):175-84. PubMed ID: 16765611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionarily conserved Wnt/Sp5 signaling is critical for anterior-posterior axis patterning in sea urchin embryos.
    Gautam S; Fenner JL; Wang B; Range RC
    iScience; 2024 Jan; 27(1):108616. PubMed ID: 38179064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.