These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 24550063)

  • 1. Adolescent-specific patterns of behavior and neural activity during social reinforcement learning.
    Jones RM; Somerville LH; Li J; Ruberry EJ; Powers A; Mehta N; Dyke J; Casey BJ
    Cogn Affect Behav Neurosci; 2014 Jun; 14(2):683-97. PubMed ID: 24550063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral and neural properties of social reinforcement learning.
    Jones RM; Somerville LH; Li J; Ruberry EJ; Libby V; Glover G; Voss HU; Ballon DJ; Casey BJ
    J Neurosci; 2011 Sep; 31(37):13039-45. PubMed ID: 21917787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Computational Account of Optimizing Social Predictions Reveals That Adolescents Are Conservative Learners in Social Contexts.
    Rosenblau G; Korn CW; Pelphrey KA
    J Neurosci; 2018 Jan; 38(4):974-988. PubMed ID: 29255008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural correlates of social exclusion during adolescence: understanding the distress of peer rejection.
    Masten CL; Eisenberger NI; Borofsky LA; Pfeifer JH; McNealy K; Mazziotta JC; Dapretto M
    Soc Cogn Affect Neurosci; 2009 Jun; 4(2):143-57. PubMed ID: 19470528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents.
    Somerville LH; Hare T; Casey BJ
    J Cogn Neurosci; 2011 Sep; 23(9):2123-34. PubMed ID: 20809855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adolescents adapt more slowly than adults to varying reward contingencies.
    Javadi AH; Schmidt DHK; Smolka MN
    J Cogn Neurosci; 2014 Dec; 26(12):2670-2681. PubMed ID: 24960048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rejection sensitivity polarizes striatal-medial prefrontal activity when anticipating social feedback.
    Powers KE; Somerville LH; Kelley WM; Heatherton TF
    J Cogn Neurosci; 2013 Nov; 25(11):1887-95. PubMed ID: 23859650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Striatum-medial prefrontal cortex connectivity predicts developmental changes in reinforcement learning.
    van den Bos W; Cohen MX; Kahnt T; Crone EA
    Cereb Cortex; 2012 Jun; 22(6):1247-55. PubMed ID: 21817091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vicarious reinforcement learning signals when instructing others.
    Apps MA; Lesage E; Ramnani N
    J Neurosci; 2015 Feb; 35(7):2904-13. PubMed ID: 25698730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural and psychological maturation of decision-making in adolescence and young adulthood.
    Christakou A; Gershman SJ; Niv Y; Simmons A; Brammer M; Rubia K
    J Cogn Neurosci; 2013 Nov; 25(11):1807-23. PubMed ID: 23859647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neural coding of expected and unexpected monetary performance outcomes: dissociations between active and observational learning.
    Bellebaum C; Jokisch D; Gizewski ER; Forsting M; Daum I
    Behav Brain Res; 2012 Feb; 227(1):241-51. PubMed ID: 22074898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased Ventromedial Prefrontal Cortex Activity in Adolescence Benefits Prosocial Reinforcement Learning.
    Westhoff B; Blankenstein NE; Schreuders E; Crone EA; van Duijvenvoorde ACK
    Dev Cogn Neurosci; 2021 Dec; 52():101018. PubMed ID: 34678671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development during adolescence of the neural processing of social emotion.
    Burnett S; Bird G; Moll J; Frith C; Blakemore SJ
    J Cogn Neurosci; 2009 Sep; 21(9):1736-50. PubMed ID: 18823226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural modulation of social reinforcement learning by intranasal oxytocin in male adults with high-functioning autism spectrum disorder: a randomized trial.
    Kruppa JA; Gossen A; Oberwelland Weiß E; Kohls G; Großheinrich N; Cholemkery H; Freitag CM; Karges W; Wölfle E; Sinzig J; Fink GR; Herpertz-Dahlmann B; Konrad K; Schulte-Rüther M
    Neuropsychopharmacology; 2019 Mar; 44(4):749-756. PubMed ID: 30390065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gambling for self, friends, and antagonists: differential contributions of affective and social brain regions on adolescent reward processing.
    Braams BR; Peters S; Peper JS; Güroğlu B; Crone EA
    Neuroimage; 2014 Oct; 100():281-9. PubMed ID: 24945662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Social Cognition as Reinforcement Learning: Feedback Modulates Emotion Inference.
    Zaki J; Kallman S; Wimmer GE; Ochsner K; Shohamy D
    J Cogn Neurosci; 2016 Sep; 28(9):1270-82. PubMed ID: 27167401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies influence neural activity for feedback learning across child and adolescent development.
    Peters S; Koolschijn PC; Crone EA; Van Duijvenvoorde AC; Raijmakers ME
    Neuropsychologia; 2014 Sep; 62():365-74. PubMed ID: 25050853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electrophysiological monetary incentive delay (e-MID) task: a way to decompose the different components of neural response to positive and negative monetary reinforcement.
    Broyd SJ; Richards HJ; Helps SK; Chronaki G; Bamford S; Sonuga-Barke EJ
    J Neurosci Methods; 2012 Jul; 209(1):40-9. PubMed ID: 22659003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural correlates of reinforcement learning and social preferences in competitive bidding.
    van den Bos W; Talwar A; McClure SM
    J Neurosci; 2013 Jan; 33(5):2137-46. PubMed ID: 23365249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural regions that underlie reinforcement learning are also active for social expectancy violations.
    Harris LT; Fiske ST
    Soc Neurosci; 2010; 5(1):76-91. PubMed ID: 20119878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.