BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 24550110)

  • 41. H3K4 Methyltransferase Activity Is Required for MLL4 Protein Stability.
    Jang Y; Wang C; Zhuang L; Liu C; Ge K
    J Mol Biol; 2017 Jun; 429(13):2046-2054. PubMed ID: 28013028
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Uhrf1 regulates active transcriptional marks at bivalent domains in pluripotent stem cells through Setd1a.
    Kim KY; Tanaka Y; Su J; Cakir B; Xiang Y; Patterson B; Ding J; Jung YW; Kim JH; Hysolli E; Lee H; Dajani R; Kim J; Zhong M; Lee JH; Skalnik D; Lim JM; Sullivan GJ; Wang J; Park IH
    Nat Commun; 2018 Jul; 9(1):2583. PubMed ID: 29968706
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Histone methyltransferase SETD1A interacts with notch and promotes notch transactivation to augment ovarian cancer development.
    Chai H; Pan C; Zhang M; Huo H; Shan H; Wu J
    BMC Cancer; 2023 Jan; 23(1):96. PubMed ID: 36707804
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ES cell cycle progression and differentiation require the action of the histone methyltransferase Dot1L.
    Barry ER; Krueger W; Jakuba CM; Veilleux E; Ambrosi DJ; Nelson CE; Rasmussen TP
    Stem Cells; 2009 Jul; 27(7):1538-47. PubMed ID: 19544450
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Loss of histone methyltransferase SETD1B in oogenesis results in the redistribution of genomic histone 3 lysine 4 trimethylation.
    Hanna CW; Huang J; Belton C; Reinhardt S; Dahl A; Andrews S; Stewart AF; Kranz A; Kelsey G
    Nucleic Acids Res; 2022 Feb; 50(4):1993-2004. PubMed ID: 35137160
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of stem cell differentiation by histone methyltransferases and demethylases.
    Pasini D; Bracken AP; Agger K; Christensen J; Hansen K; Cloos PA; Helin K
    Cold Spring Harb Symp Quant Biol; 2008; 73():253-63. PubMed ID: 19022750
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Pou5f1/Pou3f-dependent but SoxB-independent regulation of conserved enhancer N2 initiates Sox2 expression during epiblast to neural plate stages in vertebrates.
    Iwafuchi-Doi M; Yoshida Y; Onichtchouk D; Leichsenring M; Driever W; Takemoto T; Uchikawa M; Kamachi Y; Kondoh H
    Dev Biol; 2011 Apr; 352(2):354-66. PubMed ID: 21185279
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNA methylation is dispensable for the growth and survival of the extraembryonic lineages.
    Sakaue M; Ohta H; Kumaki Y; Oda M; Sakaide Y; Matsuoka C; Yamagiwa A; Niwa H; Wakayama T; Okano M
    Curr Biol; 2010 Aug; 20(16):1452-7. PubMed ID: 20637626
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Developmental disruption to the cortical transcriptome and synaptosome in a model of SETD1A loss-of-function.
    Clifton NE; Bosworth ML; Haan N; Rees E; Holmans PA; Wilkinson LS; Isles AR; Collins MO; Hall J
    Hum Mol Genet; 2022 Sep; 31(18):3095-3106. PubMed ID: 35531971
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SETD1A Methyltransferase Is Physically and Functionally Linked to the DNA Damage Repair Protein RAD18.
    Alsulami M; Munawar N; Dillon E; Oliviero G; Wynne K; Alsolami M; Moss C; Ó Gaora P; O'Meara F; Cotter D; Cagney G
    Mol Cell Proteomics; 2019 Jul; 18(7):1428-1436. PubMed ID: 31076518
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Non-catalytic Function of SETD1A Regulates Cyclin K and the DNA Damage Response.
    Hoshii T; Cifani P; Feng Z; Huang CH; Koche R; Chen CW; Delaney CD; Lowe SW; Kentsis A; Armstrong SA
    Cell; 2018 Feb; 172(5):1007-1021.e17. PubMed ID: 29474905
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The glucocorticoid receptor recruits the COMPASS complex to regulate inflammatory transcription at macrophage enhancers.
    Greulich F; Wierer M; Mechtidou A; Gonzalez-Garcia O; Uhlenhaut NH
    Cell Rep; 2021 Feb; 34(6):108742. PubMed ID: 33567280
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recapitulation and Reversal of Schizophrenia-Related Phenotypes in Setd1a-Deficient Mice.
    Mukai J; Cannavò E; Crabtree GW; Sun Z; Diamantopoulou A; Thakur P; Chang CY; Cai Y; Lomvardas S; Takata A; Xu B; Gogos JA
    Neuron; 2019 Nov; 104(3):471-487.e12. PubMed ID: 31606247
    [TBL] [Abstract][Full Text] [Related]  

  • 54. KMT2 Family of H3K4 Methyltransferases: Enzymatic Activity-dependent and -independent Functions.
    Van HT; Xie G; Dong P; Liu Z; Ge K
    J Mol Biol; 2024 Apr; 436(7):168453. PubMed ID: 38266981
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mouse gastrulation: Attributes of transcription factor regulatory network for epiblast patterning.
    Cui G; Suo S; Wang R; Qian Y; Han JJ; Peng G; Tam PPL; Jing N
    Dev Growth Differ; 2018 Oct; 60(8):463-472. PubMed ID: 30368783
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SETD1A Promotes Proliferation of Castration-Resistant Prostate Cancer Cells via FOXM1 Transcription.
    Yang L; Jin M; Park SJ; Seo SY; Jeong KW
    Cancers (Basel); 2020 Jun; 12(7):. PubMed ID: 32629770
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Histone methyltransferase SETD1A participates in lung cancer progression.
    Du M; Gong P; Zhang Y; Liu Y; Liu X; Zhang F; Wang X
    Thorac Cancer; 2021 Aug; 12(16):2247-2257. PubMed ID: 34219384
    [TBL] [Abstract][Full Text] [Related]  

  • 58. SETD1A drives stemness by reprogramming the epigenetic landscape in hepatocellular carcinoma stem cells.
    Chen J; Xu Z; Huang H; Tang Y; Shan H; Xiao F
    JCI Insight; 2023 Sep; 8(18):. PubMed ID: 37581938
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A genome-wide DNA methylation signature for SETD1B-related syndrome.
    Krzyzewska IM; Maas SM; Henneman P; Lip KVD; Venema A; Baranano K; Chassevent A; Aref-Eshghi E; van Essen AJ; Fukuda T; Ikeda H; Jacquemont M; Kim HG; Labalme A; Lewis SME; Lesca G; Madrigal I; Mahida S; Matsumoto N; Rabionet R; Rajcan-Separovic E; Qiao Y; Sadikovic B; Saitsu H; Sweetser DA; Alders M; Mannens MMAM
    Clin Epigenetics; 2019 Nov; 11(1):156. PubMed ID: 31685013
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development.
    Glaser S; Schaft J; Lubitz S; Vintersten K; van der Hoeven F; Tufteland KR; Aasland R; Anastassiadis K; Ang SL; Stewart AF
    Development; 2006 Apr; 133(8):1423-32. PubMed ID: 16540515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.