These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24550199)

  • 21. Proteomics analysis for enhanced lipid accumulation in oleaginous Chlorella vulgaris under a heterotrophic-Na⁺ induction two-step regime.
    Li Y; Mu J; Chen D; Xu H; Han F; Feng B; Zeng H
    Biotechnol Lett; 2015 May; 37(5):1021-30. PubMed ID: 25548117
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two stage heterotrophy/photoinduction culture of Scenedesmus incrassatulus: potential for lutein production.
    Flórez-Miranda L; Cañizares-Villanueva RO; Melchy-Antonio O; Martínez-Jerónimo F; Flores-Ortíz CM
    J Biotechnol; 2017 Nov; 262():67-74. PubMed ID: 28928028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of nutritional compositions of growth medium for Chlorella sp. FJ3 growth kinetics in batch and continuous-flow photoreactors.
    Leu JY; Lin YH
    Environ Technol; 2013; 34(17-20):2841-51. PubMed ID: 24527649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel culture medium designed for the simultaneous enhancement of biomass and lipid production by Chlorella vulgaris UTEX 26.
    Ramírez-López C; Chairez I; Fernández-Linares L
    Bioresour Technol; 2016 Jul; 212():207-216. PubMed ID: 27099946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Statistical optimization of culture media for growth and lipid production of Chlorella protothecoides UTEX 250.
    Cheng KC; Ren M; Ogden KL
    Bioresour Technol; 2013 Jan; 128():44-8. PubMed ID: 23196220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Harvesting Chlorella vulgaris by natural increase in pH: effect of medium composition.
    Nguyen TD; Frappart M; Jaouen P; Pruvost J; Bourseau P
    Environ Technol; 2014; 35(9-12):1378-88. PubMed ID: 24701936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of microfluidization on in vitro micellization and intestinal cell uptake of lutein from Chlorella vulgaris.
    Cha KH; Lee JY; Song DG; Kim SM; Lee DU; Jeon JY; Pan CH
    J Agric Food Chem; 2011 Aug; 59(16):8670-4. PubMed ID: 21776960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Statistical optimization of the growth factors for Chaetoceros neogracile using fractional factorial design and central composite design.
    Jeong SE; Park JK; Kim JD; Chang IJ; Hong SJ; Kang SH; Lee CG
    J Microbiol Biotechnol; 2008 Dec; 18(12):1919-26. PubMed ID: 19131694
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A study of the growth for the microalga Chlorella vulgaris by photo-bio-calorimetry and other on-line and off-line techniques.
    Patiño R; Janssen M; von Stockar U
    Biotechnol Bioeng; 2007 Mar; 96(4):757-67. PubMed ID: 16952149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterotrophic cultivation of Chlorella vulgaris using broken rice hydrolysate as carbon source for biomass and pigment production.
    Cai Y; Liu Y; Liu T; Gao K; Zhang Q; Cao L; Wang Y; Wu X; Zheng H; Peng H; Ruan R
    Bioresour Technol; 2021 Mar; 323():124607. PubMed ID: 33385629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors.
    Li X; Xu H; Wu Q
    Biotechnol Bioeng; 2007 Nov; 98(4):764-71. PubMed ID: 17497732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris.
    Griffiths MJ; van Hille RP; Harrison ST
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2345-56. PubMed ID: 24413971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle.
    Discart V; Bilad MR; Marbelia L; Vankelecom IF
    Bioresour Technol; 2014; 152():321-8. PubMed ID: 24315936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of iron on growth and lipid accumulation in Chlorella vulgaris.
    Liu ZY; Wang GC; Zhou BC
    Bioresour Technol; 2008 Jul; 99(11):4717-22. PubMed ID: 17993270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris.
    Atta M; Idris A; Bukhari A; Wahidin S
    Bioresour Technol; 2013 Nov; 148():373-8. PubMed ID: 24063820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of L-glutamic acid on the growth and ammonium removal from ammonium solution and natural wastewater by Chlorella vulgaris NTM06.
    Khan M; Yoshida N
    Bioresour Technol; 2008 Feb; 99(3):575-82. PubMed ID: 17321741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A two-stage cultivation process for the growth enhancement of Chlorella vulgaris.
    Yen HW; Chang JT
    Bioprocess Biosyst Eng; 2013 Nov; 36(11):1797-801. PubMed ID: 23411876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast media optimization for mixotrophic cultivation of Chlorella vulgaris.
    Ward VCA; Rehmann L
    Sci Rep; 2019 Dec; 9(1):19262. PubMed ID: 31848403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The culture of Chlorella vulgaris in a recycled supernatant: effects on biomass production and medium quality.
    Hadj-Romdhane F; Zheng X; Jaouen P; Pruvost J; Grizeau D; Croué JP; Bourseau P
    Bioresour Technol; 2013 Mar; 132():285-92. PubMed ID: 23411460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.