BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24550278)

  • 1. Structural basis for the electron transfer from an open form of NADPH-cytochrome P450 oxidoreductase to heme oxygenase.
    Sugishima M; Sato H; Higashimoto Y; Harada J; Wada K; Fukuyama K; Noguchi M
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):2524-9. PubMed ID: 24550278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of NADPH in the interaction between heme oxygenase-1 and cytochrome P450 reductase.
    Higashimoto Y; Sakamoto H; Hayashi S; Sugishima M; Fukuyama K; Palmer G; Noguchi M
    J Biol Chem; 2005 Jan; 280(1):729-37. PubMed ID: 15516695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein/protein interactions in the mammalian heme degradation pathway: heme oxygenase-2, cytochrome P450 reductase, and biliverdin reductase.
    Spencer AL; Bagai I; Becker DF; Zuiderweg ER; Ragsdale SW
    J Biol Chem; 2014 Oct; 289(43):29836-58. PubMed ID: 25196843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational Equilibrium of NADPH-Cytochrome P450 Oxidoreductase Is Essential for Heme Oxygenase Reaction.
    Sugishima M; Taira J; Sagara T; Nakao R; Sato H; Noguchi M; Fukuyama K; Yamamoto K; Yasunaga T; Sakamoto H
    Antioxidants (Basel); 2020 Jul; 9(8):. PubMed ID: 32731542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reactions of heme- and verdoheme-heme oxygenase-1 complexes with FMN-depleted NADPH-cytochrome P450 reductase. Electrons required for verdoheme oxidation can be transferred through a pathway not involving FMN.
    Higashimoto Y; Sato H; Sakamoto H; Takahashi K; Palmer G; Noguchi M
    J Biol Chem; 2006 Oct; 281(42):31659-67. PubMed ID: 16928691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of a NADPH-cytochrome P450 oxidoreductase (CYPOR) and heme oxygenase 1 fusion protein implies a conformational change in CYPOR upon NADPH/NADP
    Sugishima M; Sato H; Wada K; Yamamoto K
    FEBS Lett; 2019 Apr; 593(8):868-875. PubMed ID: 30883732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of heme oxygenase-1 from cyanobacterium Synechocystis sp. PCC 6803 in complex with heme.
    Sugishima M; Migita CT; Zhang X; Yoshida T; Fukuyama K
    Eur J Biochem; 2004 Nov; 271(22):4517-25. PubMed ID: 15560792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relaxation kinetics of cytochrome P450 reductase: internal electron transfer is limited by conformational change and regulated by coenzyme binding.
    Gutierrez A; Paine M; Wolf CR; Scrutton NS; Roberts GC
    Biochemistry; 2002 Apr; 41(14):4626-37. PubMed ID: 11926825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of Redox and Structural States in Cytochrome P450 Reductase Studied by Molecular Dynamics Simulation.
    Iijima M; Ohnuki J; Sato T; Sugishima M; Takano M
    Sci Rep; 2019 Jun; 9(1):9341. PubMed ID: 31249341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure of the cytochrome P450 reductase-cytochrome
    Freeman SL; Martel A; Devos JM; Basran J; Raven EL; Roberts GCK
    J Biol Chem; 2018 Apr; 293(14):5210-5219. PubMed ID: 29475945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domain motion in cytochrome P450 reductase: conformational equilibria revealed by NMR and small-angle x-ray scattering.
    Ellis J; Gutierrez A; Barsukov IL; Huang WC; Grossmann JG; Roberts GCK
    J Biol Chem; 2009 Dec; 284(52):36628-36637. PubMed ID: 19858215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and structural characterization of the interaction between the FMN binding domain of cytochrome P450 reductase and cytochrome c.
    Huang R; Zhang M; Rwere F; Waskell L; Ramamoorthy A
    J Biol Chem; 2015 Feb; 290(8):4843-4855. PubMed ID: 25512382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled motions direct electrons along human microsomal P450 Chains.
    Pudney CR; Khara B; Johannissen LO; Scrutton NS
    PLoS Biol; 2011 Dec; 9(12):e1001222. PubMed ID: 22205878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heme oxygenase isoforms differ in their subcellular trafficking during hypoxia and are differentially modulated by cytochrome P450 reductase.
    Linnenbaum M; Busker M; Kraehling JR; Behrends S
    PLoS One; 2012; 7(4):e35483. PubMed ID: 22545110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The closed and compact domain organization of the 70-kDa human cytochrome P450 reductase in its oxidized state as revealed by NMR.
    Vincent B; Morellet N; Fatemi F; Aigrain L; Truan G; Guittet E; Lescop E
    J Mol Biol; 2012 Jul; 420(4-5):296-309. PubMed ID: 22543241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations of human cytochrome P450 reductase differentially modulate heme oxygenase-1 activity and oligomerization.
    Marohnic CC; Huber Iii WJ; Patrick Connick J; Reed JR; McCammon K; Panda SP; Martásek P; Backes WL; Masters BS
    Arch Biochem Biophys; 2011 Sep; 513(1):42-50. PubMed ID: 21741353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes.
    Wang M; Roberts DL; Paschke R; Shea TM; Masters BS; Kim JJ
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8411-6. PubMed ID: 9237990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometric identification of lysine residues of heme oxygenase-1 that are involved in its interaction with NADPH-cytochrome P450 reductase.
    Higashimoto Y; Sugishima M; Sato H; Sakamoto H; Fukuyama K; Palmer G; Noguchi M
    Biochem Biophys Res Commun; 2008 Mar; 367(4):852-8. PubMed ID: 18194664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational changes of the NADPH-dependent cytochrome P450 reductase in the course of electron transfer to cytochromes P450.
    Laursen T; Jensen K; Møller BL
    Biochim Biophys Acta; 2011 Jan; 1814(1):132-8. PubMed ID: 20624491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A second FMN binding site in yeast NADPH-cytochrome P450 reductase suggests a mechanism of electron transfer by diflavin reductases.
    Lamb DC; Kim Y; Yermalitskaya LV; Yermalitsky VN; Lepesheva GI; Kelly SL; Waterman MR; Podust LM
    Structure; 2006 Jan; 14(1):51-61. PubMed ID: 16407065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.