BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 24550299)

  • 1. Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria.
    Lidbury I; Murrell JC; Chen Y
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):2710-5. PubMed ID: 24550299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic Insight into Trimethylamine N-Oxide Recognition by the Marine Bacterium Ruegeria pomeroyi DSS-3.
    Li CY; Chen XL; Shao X; Wei TD; Wang P; Xie BB; Qin QL; Zhang XY; Su HN; Song XY; Shi M; Zhou BC; Zhang YZ
    J Bacteriol; 2015 Nov; 197(21):3378-87. PubMed ID: 26283766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trimethylamine and trimethylamine N-oxide are supplementary energy sources for a marine heterotrophic bacterium: implications for marine carbon and nitrogen cycling.
    Lidbury ID; Murrell JC; Chen Y
    ISME J; 2015 Mar; 9(3):760-9. PubMed ID: 25148480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the Trimethylamine
    Gao C; Zhang N; He XY; Wang N; Zhang XY; Wang P; Chen XL; Zhang YZ; Ding JM; Li CY
    Front Microbiol; 2022; 13():838608. PubMed ID: 35295296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of trimethylamine N-oxide (TMAO) demethylase and TMAO permease in Methylocella silvestris BL2.
    Zhu Y; Jameson E; Parslow RA; Lidbury I; Fu T; Dafforn TR; Schäfer H; Chen Y
    Environ Microbiol; 2014 Oct; 16(10):3318-30. PubMed ID: 25088783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular analysis of the trimethylamine N-oxide (TMAO) reductase respiratory system from a Shewanella species.
    Dos Santos JP; Iobbi-Nivol C; Couillault C; Giordano G; Méjean V
    J Mol Biol; 1998 Nov; 284(2):421-33. PubMed ID: 9813127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanism for bacterial transformation of dimethylsulfide to dimethylsulfoxide: a missing link in the marine organic sulfur cycle.
    Lidbury I; Kröber E; Zhang Z; Zhu Y; Murrell JC; Chen Y; Schäfer H
    Environ Microbiol; 2016 Sep; 18(8):2754-66. PubMed ID: 27114231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ubiquitous occurrence of a dimethylsulfoniopropionate ABC transporter in abundant marine bacteria.
    Li CY; Mausz MA; Murphy A; Zhang N; Chen XL; Wang SY; Gao C; Aguilo-Ferretjans MM; Silvano E; Lidbury IDEA; Fu HH; Todd JD; Chen Y; Zhang YZ
    ISME J; 2023 Apr; 17(4):579-587. PubMed ID: 36707613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bacterial TMAO transporter.
    Raymond JA; Plopper GE
    Comp Biochem Physiol B Biochem Mol Biol; 2002 Sep; 133(1):29-34. PubMed ID: 12223209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A technique for the determination of trimethylamine-N-oxide in natural waters and biological media.
    Hatton AD; Gibb SW
    Anal Chem; 1999 Nov; 71(21):4886-91. PubMed ID: 10565278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration.
    McCrindle SL; Kappler U; McEwan AG
    Adv Microb Physiol; 2005; 50():147-98. PubMed ID: 16221580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation of anaerobic cultures of Escherichia coli K-12 in response to environmental trimethylamine-N-oxide.
    Denby KJ; Rolfe MD; Crick E; Sanguinetti G; Poole RK; Green J
    Environ Microbiol; 2015 Jul; 17(7):2477-91. PubMed ID: 25471524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid remodelling is a widespread strategy in marine heterotrophic bacteria upon phosphorus deficiency.
    Sebastián M; Smith AF; González JM; Fredricks HF; Van Mooy B; Koblížek M; Brandsma J; Koster G; Mestre M; Mostajir B; Pitta P; Postle AD; Sánchez P; Gasol JM; Scanlan DJ; Chen Y
    ISME J; 2016 Apr; 10(4):968-78. PubMed ID: 26565724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metagenomic data-mining reveals contrasting microbial populations responsible for trimethylamine formation in human gut and marine ecosystems.
    Jameson E; Doxey AC; Airs R; Purdy KJ; Murrell JC; Chen Y
    Microb Genom; 2016 Sep; 2(9):e000080. PubMed ID: 28785417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of Heterotrophic Bacterial Assemblages within Synechococcus Cultures.
    Zheng Q; Wang Y; Xie R; Lang AS; Liu Y; Lu J; Zhang X; Sun J; Suttle CA; Jiao N
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. O
    Zhu Y; Ksibe AZ; Schäfer H; Blindauer CA; Bugg TD; Chen Y
    FEBS J; 2016 Nov; 283(21):3979-3993. PubMed ID: 27644004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial reduction of trimethylamine oxide.
    Barrett EL; Kwan HS
    Annu Rev Microbiol; 1985; 39():131-49. PubMed ID: 3904597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitution of the trimethylamine oxide reductase regulatory elements of Shewanella oneidensis in Escherichia coli.
    Gon S; Patte JC; Dos Santos JP; Méjean V
    J Bacteriol; 2002 Mar; 184(5):1262-9. PubMed ID: 11844754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One carbon metabolism in SAR11 pelagic marine bacteria.
    Sun J; Steindler L; Thrash JC; Halsey KH; Smith DP; Carter AE; Landry ZC; Giovannoni SJ
    PLoS One; 2011; 6(8):e23973. PubMed ID: 21886845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage.
    Seibel BA; Walsh PJ
    J Exp Biol; 2002 Feb; 205(Pt 3):297-306. PubMed ID: 11854367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.