BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 24550316)

  • 1. Functional architecture of MFS D-glucose transporters.
    Madej MG; Sun L; Yan N; Kaback HR
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):E719-27. PubMed ID: 24550316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4.
    Sun L; Zeng X; Yan C; Sun X; Gong X; Rao Y; Yan N
    Nature; 2012 Oct; 490(7420):361-6. PubMed ID: 23075985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Sequence-Function Analysis of the Major Facilitator Superfamily: The "Mix-and-Match" Method.
    Madej MG
    Methods Enzymol; 2015; 557():521-49. PubMed ID: 25950980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Affinity and path of binding xylopyranose unto E. coli xylose permease.
    Wambo TO; Chen LY; Phelix C; Perry G
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):202-206. PubMed ID: 29032199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence alignment and homology threading reveals prokaryotic and eukaryotic proteins similar to lactose permease.
    Kasho VN; Smirnova IN; Kaback HR
    J Mol Biol; 2006 May; 358(4):1060-70. PubMed ID: 16574153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters.
    Quistgaard EM; Löw C; Moberg P; Trésaugues L; Nordlund P
    Nat Struct Mol Biol; 2013 Jun; 20(6):766-8. PubMed ID: 23624861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asp
    Seica AFS; Iancu CV; Pfeilschifter B; Madej MG; Choe JY; Hellwig P
    J Biol Chem; 2020 Nov; 295(45):15253-15261. PubMed ID: 32859752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary mix-and-match with MFS transporters.
    Madej MG; Dang S; Yan N; Kaback HR
    Proc Natl Acad Sci U S A; 2013 Apr; 110(15):5870-4. PubMed ID: 23530251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary mix-and-match with MFS transporters II.
    Madej MG; Kaback HR
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):E4831-8. PubMed ID: 24259711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and mechanism of the mammalian fructose transporter GLUT5.
    Nomura N; Verdon G; Kang HJ; Shimamura T; Nomura Y; Sonoda Y; Hussien SA; Qureshi AA; Coincon M; Sato Y; Abe H; Nakada-Nakura Y; Hino T; Arakawa T; Kusano-Arai O; Iwanari H; Murata T; Kobayashi T; Hamakubo T; Kasahara M; Iwata S; Drew D
    Nature; 2015 Oct; 526(7573):397-401. PubMed ID: 26416735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a glucose/H+ symporter and its mechanism of action.
    Iancu CV; Zamoon J; Woo SB; Aleshin A; Choe JY
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17862-7. PubMed ID: 24127585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE.
    Wisedchaisri G; Park MS; Iadanza MG; Zheng H; Gonen T
    Nat Commun; 2014 Aug; 5():4521. PubMed ID: 25088546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Glimpse of Membrane Transport through Structures-Advances in the Structural Biology of the GLUT Glucose Transporters.
    Yan N
    J Mol Biol; 2017 Aug; 429(17):2710-2725. PubMed ID: 28756087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular determinants for the thermodynamic and functional divergence of uniporter GLUT1 and proton symporter XylE.
    Ke M; Yuan Y; Jiang X; Yan N; Gong H
    PLoS Comput Biol; 2017 Jun; 13(6):e1005603. PubMed ID: 28617850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Major facilitator superfamily porters, LacY, FucP and XylE of Escherichia coli appear to have evolved positionally dissimilar catalytic residues without rearrangement of 3-TMS repeat units.
    Västermark A; Lunt B; Saier M
    J Mol Microbiol Biotechnol; 2014; 24(2):82-90. PubMed ID: 24603210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters.
    Deng D; Yan N
    Protein Sci; 2016 Mar; 25(3):546-58. PubMed ID: 26650681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The alternating-access mechanism of MFS transporters arises from inverted-topology repeats.
    Radestock S; Forrest LR
    J Mol Biol; 2011 Apr; 407(5):698-715. PubMed ID: 21315728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cloning and DNA sequence of the gene xylE for xylose-proton symport in Escherichia coli K12.
    Davis EO; Henderson PJ
    J Biol Chem; 1987 Oct; 262(29):13928-32. PubMed ID: 2820984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Simulations of the Human Glucose Transporter GLUT1.
    Park MS
    PLoS One; 2015; 10(4):e0125361. PubMed ID: 25919356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conservation of residues involved in sugar/H(+) symport by the sucrose permease of Escherichia coli relative to lactose permease.
    Vadyvaloo V; Smirnova IN; Kasho VN; Kaback HR
    J Mol Biol; 2006 May; 358(4):1051-9. PubMed ID: 16574149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.