These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 24550402)

  • 21. Novel structural determinants on SIRP alpha that mediate binding to CD47.
    Lee WY; Weber DA; Laur O; Severson EA; McCall I; Jen RP; Chin AC; Wu T; Gernert KM; Parkos CA
    J Immunol; 2007 Dec; 179(11):7741-50. PubMed ID: 18025220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signal regulatory protein alpha (SIRPalpha)/CD47 interaction and function.
    Barclay AN
    Curr Opin Immunol; 2009 Feb; 21(1):47-52. PubMed ID: 19223164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The regulation of CD47-SIRPα signaling axis by microRNAs in combination with conventional cytotoxic drugs together with the help of nano-delivery: a choice for therapy?
    Beizavi Z; Gheibihayat SM; Moghadasian H; Zare H; Yeganeh BS; Askari H; Vakili S; Tajbakhsh A; Savardashtaki A
    Mol Biol Rep; 2021 Jul; 48(7):5707-5722. PubMed ID: 34275112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discovery of high affinity, pan-allelic, and pan-mammalian reactive antibodies against the myeloid checkpoint receptor SIRPα.
    Sim J; Sockolosky JT; Sangalang E; Izquierdo S; Pedersen D; Harriman W; Wibowo AS; Carter J; Madan A; Doyle L; Harrabi O; Kauder SE; Chen A; Kuo TC; Wan H; Pons J
    MAbs; 2019; 11(6):1036-1052. PubMed ID: 31257988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy.
    Logtenberg MEW; Jansen JHM; Raaben M; Toebes M; Franke K; Brandsma AM; Matlung HL; Fauster A; Gomez-Eerland R; Bakker NAM; van der Schot S; Marijt KA; Verdoes M; Haanen JBAG; van den Berg JH; Neefjes J; van den Berg TK; Brummelkamp TR; Leusen JHW; Scheeren FA; Schumacher TN
    Nat Med; 2019 Apr; 25(4):612-619. PubMed ID: 30833751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exosome-SIRPα, a CD47 blockade increases cancer cell phagocytosis.
    Koh E; Lee EJ; Nam GH; Hong Y; Cho E; Yang Y; Kim IS
    Biomaterials; 2017 Mar; 121():121-129. PubMed ID: 28086180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural insight into the specific interaction between murine SHPS-1/SIRP alpha and its ligand CD47.
    Nakaishi A; Hirose M; Yoshimura M; Oneyama C; Saito K; Kuki N; Matsuda M; Honma N; Ohnishi H; Matozaki T; Okada M; Nakagawa A
    J Mol Biol; 2008 Jan; 375(3):650-60. PubMed ID: 18045614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer.
    Matlung HL; Szilagyi K; Barclay NA; van den Berg TK
    Immunol Rev; 2017 Mar; 276(1):145-164. PubMed ID: 28258703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The CD47-SIRPα Immune Checkpoint.
    Logtenberg MEW; Scheeren FA; Schumacher TN
    Immunity; 2020 May; 52(5):742-752. PubMed ID: 32433947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advances in Anti-Tumor Treatments Targeting the CD47/SIRPα Axis.
    Zhang W; Huang Q; Xiao W; Zhao Y; Pi J; Xu H; Zhao H; Xu J; Evans CE; Jin H
    Front Immunol; 2020; 11():18. PubMed ID: 32082311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CD47 functions as a molecular switch for erythrocyte phagocytosis.
    Burger P; Hilarius-Stokman P; de Korte D; van den Berg TK; van Bruggen R
    Blood; 2012 Jun; 119(23):5512-21. PubMed ID: 22427202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding Mechanism of CD47 with SIRPα Variants and Its Antibody: Elucidated by Molecular Dynamics Simulations.
    Huang K; Liu Y; Wen S; Zhao Y; Ding H; Liu H; Kong DX
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway.
    Matozaki T; Murata Y; Okazawa H; Ohnishi H
    Trends Cell Biol; 2009 Feb; 19(2):72-80. PubMed ID: 19144521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Advances of Tumor Therapy Based on the CD47-SIRPα Axis.
    Wang Y; Zhao C; Liu Y; Wang C; Jiang H; Hu Y; Wu J
    Mol Pharm; 2022 May; 19(5):1273-1293. PubMed ID: 35436123
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A SIRPα-Fc fusion protein enhances the antitumor effect of oncolytic adenovirus against ovarian cancer.
    Huang Y; Lv SQ; Liu PY; Ye ZL; Yang H; Li LF; Zhu HL; Wang Y; Cui LZ; Jiang DQ; Hao FY; Xu HM; Jin HJ; Qian QJ
    Mol Oncol; 2020 Mar; 14(3):657-668. PubMed ID: 31899582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SIRPα-Antibody Fusion Proteins Selectively Bind and Eliminate Dual Antigen-Expressing Tumor Cells.
    Piccione EC; Juarez S; Tseng S; Liu J; Stafford M; Narayanan C; Wang L; Weiskopf K; Majeti R
    Clin Cancer Res; 2016 Oct; 22(20):5109-5119. PubMed ID: 27126995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peptide-mediated inhibition of neutrophil transmigration by blocking CD47 interactions with signal regulatory protein alpha.
    Liu Y; O'Connor MB; Mandell KJ; Zen K; Ullrich A; Bühring HJ; Parkos CA
    J Immunol; 2004 Feb; 172(4):2578-85. PubMed ID: 14764731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of Glutaminyl Cyclase isoenzyme isoQC as a regulator of SIRPα-CD47 axis.
    Wu Z; Weng L; Zhang T; Tian H; Fang L; Teng H; Zhang W; Gao J; Hao Y; Li Y; Zhou H; Wang P
    Cell Res; 2019 Jun; 29(6):502-505. PubMed ID: 31089204
    [No Abstract]   [Full Text] [Related]  

  • 39. Genetic variation of human neutrophil Fcγ receptors and SIRPα in antibody-dependent cellular cytotoxicity towards cancer cells.
    Treffers LW; Zhao XW; van der Heijden J; Nagelkerke SQ; van Rees DJ; Gonzalez P; Geissler J; Verkuijlen P; van Houdt M; de Boer M; Kuijpers TW; van den Berg TK; Matlung HL
    Eur J Immunol; 2018 Feb; 48(2):344-354. PubMed ID: 28952147
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macrophages show higher levels of engulfment after disruption of
    Hayes BH; Tsai RK; Dooling LJ; Kadu S; Lee JY; Pantano D; Rodriguez PL; Subramanian S; Shin JW; Discher DE
    J Cell Sci; 2020 Mar; 133(5):. PubMed ID: 31964705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.