These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 24550447)
1. OGFOD1 catalyzes prolyl hydroxylation of RPS23 and is involved in translation control and stress granule formation. Singleton RS; Liu-Yi P; Formenti F; Ge W; Sekirnik R; Fischer R; Adam J; Pollard PJ; Wolf A; Thalhammer A; Loenarz C; Flashman E; Yamamoto A; Coleman ML; Kessler BM; Wappner P; Schofield CJ; Ratcliffe PJ; Cockman ME Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4031-6. PubMed ID: 24550447 [TBL] [Abstract][Full Text] [Related]
2. Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth. Katz MJ; Acevedo JM; Loenarz C; Galagovsky D; Liu-Yi P; Pérez-Pepe M; Thalhammer A; Sekirnik R; Ge W; Melani M; Thomas MG; Simonetta S; Boccaccio GL; Schofield CJ; Cockman ME; Ratcliffe PJ; Wappner P Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4025-30. PubMed ID: 24550463 [TBL] [Abstract][Full Text] [Related]
3. Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy. Loenarz C; Sekirnik R; Thalhammer A; Ge W; Spivakovsky E; Mackeen MM; McDonough MA; Cockman ME; Kessler BM; Ratcliffe PJ; Wolf A; Schofield CJ Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4019-24. PubMed ID: 24550462 [TBL] [Abstract][Full Text] [Related]
4. Structure of the ribosomal oxygenase OGFOD1 provides insights into the regio- and stereoselectivity of prolyl hydroxylases. Horita S; Scotti JS; Thinnes C; Mottaghi-Taromsari YS; Thalhammer A; Ge W; Aik W; Loenarz C; Schofield CJ; McDonough MA Structure; 2015 Apr; 23(4):639-52. PubMed ID: 25728928 [TBL] [Abstract][Full Text] [Related]
5. The ribosomal prolyl-hydroxylase OGFOD1 decreases during cardiac differentiation and modulates translation and splicing. Stoehr A; Kennedy L; Yang Y; Patel S; Lin Y; Linask KL; Fergusson M; Zhu J; Gucek M; Zou J; Murphy E JCI Insight; 2019 May; 5(13):. PubMed ID: 31112528 [TBL] [Abstract][Full Text] [Related]
6. Growing with the wind. Ribosomal protein hydroxylation and cell growth. Katz MJ; Acevedo JM; Wappner P Fly (Austin); 2014; 8(3):153-6. PubMed ID: 25482726 [TBL] [Abstract][Full Text] [Related]
8. Selective Inhibitors of a Human Prolyl Hydroxylase (OGFOD1) Involved in Ribosomal Decoding. Thinnes CC; Lohans CT; Abboud MI; Yeh TL; Tumber A; Nowak RP; Attwood M; Cockman ME; Oppermann U; Loenarz C; Schofield CJ Chemistry; 2019 Feb; 25(8):2019-2024. PubMed ID: 30427558 [TBL] [Abstract][Full Text] [Related]
9. OGFOD1 is required for breast cancer cell proliferation and is associated with poor prognosis in breast cancer. Kim JH; Lee SM; Lee JH; Chun S; Kang BH; Kwak S; Roe JS; Kim TW; Kim H; Kim WH; Cho EJ; Youn HD Oncotarget; 2015 Aug; 6(23):19528-41. PubMed ID: 25909288 [TBL] [Abstract][Full Text] [Related]
10. Ogfod1 deletion increases cardiac beta-alanine levels and protects mice against ischaemia- reperfusion injury. Harris M; Sun J; Keeran K; Aponte A; Singh K; Springer D; Gucek M; Pirooznia M; Cockman ME; Murphy E; Kennedy LM Cardiovasc Res; 2022 Oct; 118(13):2847-2858. PubMed ID: 34668514 [TBL] [Abstract][Full Text] [Related]
11. OGFOD1, a member of the 2-oxoglutarate and iron dependent dioxygenase family, functions in ischemic signaling. Saito K; Adachi N; Koyama H; Matsushita M FEBS Lett; 2010 Aug; 584(15):3340-7. PubMed ID: 20579638 [TBL] [Abstract][Full Text] [Related]
13. The prolyl hydroxylase OGFOD1 promotes cancer cell proliferation by regulating the expression of cell cycle regulators. Fujisaki T; Saito K; Kikuchi T; Kondo E FEBS Lett; 2023 Apr; 597(8):1073-1085. PubMed ID: 36464654 [TBL] [Abstract][Full Text] [Related]
14. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes. Stoehr A; Yang Y; Patel S; Evangelista AM; Aponte A; Wang G; Liu P; Boylston J; Kloner PH; Lin Y; Gucek M; Zhu J; Murphy E Cardiovasc Res; 2016 Jun; 110(3):346-58. PubMed ID: 27095734 [TBL] [Abstract][Full Text] [Related]
15. Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation. Scotti JS; Leung IK; Ge W; Bentley MA; Paps J; Kramer HB; Lee J; Aik W; Choi H; Paulsen SM; Bowman LA; Loik ND; Horita S; Ho CH; Kershaw NJ; Tang CM; Claridge TD; Preston GM; McDonough MA; Schofield CJ Proc Natl Acad Sci U S A; 2014 Sep; 111(37):13331-6. PubMed ID: 25197067 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of OGFOD1 by FG4592 confers neuroprotection by activating unfolded protein response and autophagy after ischemic stroke. Xie J; Zhang Y; Li B; Xi W; Wang Y; Li L; Liu C; Shen L; Han B; Kong Y; Yao H; Zhang Z J Transl Med; 2024 Mar; 22(1):248. PubMed ID: 38454480 [TBL] [Abstract][Full Text] [Related]
17. Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases. Chowdhury R; McDonough MA; Mecinović J; Loenarz C; Flashman E; Hewitson KS; Domene C; Schofield CJ Structure; 2009 Jul; 17(7):981-9. PubMed ID: 19604478 [TBL] [Abstract][Full Text] [Related]
18. Protein Hydroxylation Catalyzed by 2-Oxoglutarate-dependent Oxygenases. Markolovic S; Wilkins SE; Schofield CJ J Biol Chem; 2015 Aug; 290(34):20712-20722. PubMed ID: 26152730 [TBL] [Abstract][Full Text] [Related]
19. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. Walport LJ; Schofield CJ Chem Rec; 2018 Dec; 18(12):1760-1781. PubMed ID: 30151867 [TBL] [Abstract][Full Text] [Related]
20. OGFOD1, a novel modulator of eukaryotic translation initiation factor 2alpha phosphorylation and the cellular response to stress. Wehner KA; Schütz S; Sarnow P Mol Cell Biol; 2010 Apr; 30(8):2006-16. PubMed ID: 20154146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]