These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24550455)

  • 1. Detecting grain rotation at the nanoscale.
    Chen B; Lutker K; Lei J; Yan J; Yang S; Mao HK
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3350-3. PubMed ID: 24550455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversal in the Size Dependence of Grain Rotation.
    Zhou X; Tamura N; Mi Z; Lei J; Yan J; Zhang L; Deng W; Ke F; Yue B; Chen B
    Phys Rev Lett; 2017 Mar; 118(9):096101. PubMed ID: 28306305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size effect on the deformation mechanisms of nanocrystalline platinum thin films.
    Shu X; Kong D; Lu Y; Long H; Sun S; Sha X; Zhou H; Chen Y; Mao S; Liu Y
    Sci Rep; 2017 Oct; 7(1):13264. PubMed ID: 29038576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-pressure strengthening in ultrafine-grained metals.
    Zhou X; Feng Z; Zhu L; Xu J; Miyagi L; Dong H; Sheng H; Wang Y; Li Q; Ma Y; Zhang H; Yan J; Tamura N; Kunz M; Lutker K; Huang T; Hughes DA; Huang X; Chen B
    Nature; 2020 Mar; 579(7797):67-72. PubMed ID: 32094661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Texture of nanocrystalline nickel: probing the lower size limit of dislocation activity.
    Chen B; Lutker K; Raju SV; Yan J; Kanitpanyacharoen W; Lei J; Yang S; Wenk HR; Mao HK; Williams Q
    Science; 2012 Dec; 338(6113):1448-51. PubMed ID: 23239731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals.
    Han X; Wang L; Yue Y; Zhang Z
    Ultramicroscopy; 2015 Apr; 151():94-100. PubMed ID: 25576291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Dynamics as a Means to Investigate Grain Size and Strain Rate Effect on Plastic Deformation of 316 L Nanocrystalline Stainless-Steel.
    Husain A; La P; Hongzheng Y; Jie S
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32698390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competing grain-boundary- and dislocation-mediated mechanisms in plastic strain recovery in nanocrystalline aluminum.
    Li X; Wei Y; Yang W; Gao H
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16108-13. PubMed ID: 19805266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum.
    Wang L; Teng J; Liu P; Hirata A; Ma E; Zhang Z; Chen M; Han X
    Nat Commun; 2014 Jul; 5():4402. PubMed ID: 25030380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ atomic-scale observation of grain size and twin thickness effect limit in twin-structural nanocrystalline platinum.
    Wang L; Du K; Yang C; Teng J; Fu L; Guo Y; Zhang Z; Han X
    Nat Commun; 2020 Mar; 11(1):1167. PubMed ID: 32127536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grain boundary-mediated plasticity in nanocrystalline nickel.
    Shan Z; Stach EA; Wiezorek JM; Knapp JA; Follstaedt DM; Mao SX
    Science; 2004 Jul; 305(5684):654-7. PubMed ID: 15286368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated grain mapping using wide angle convergent beam electron diffraction in transmission electron microscope for nanomaterials.
    Kumar V
    Microsc Microanal; 2011 Dec; 17(6):859-65. PubMed ID: 22067632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals.
    Kobler A; Kashiwar A; Hahn H; Kübel C
    Ultramicroscopy; 2013 May; 128():68-81. PubMed ID: 23524380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the dislocation reactions on Σ3{111} twin boundary during deformation twin nucleation process in an ultrafine-grained high-manganese steel.
    Hung CY; Shimokawa T; Bai Y; Tsuji N; Murayama M
    Sci Rep; 2021 Sep; 11(1):19298. PubMed ID: 34588568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grain boundary stability governs hardening and softening in extremely fine nanograined metals.
    Hu J; Shi YN; Sauvage X; Sha G; Lu K
    Science; 2017 Mar; 355(6331):1292-1296. PubMed ID: 28336664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced thermal stability of nanograined metals below a critical grain size.
    Zhou X; Li XY; Lu K
    Science; 2018 May; 360(6388):526-530. PubMed ID: 29724953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong texture in nanograin bulk Nd-Fe-B magnets via slow plastic deformation at low temperatures.
    Wang F; Shen W; Fan J; Du J; Chen K; Liu JP
    Nanoscale; 2019 Mar; 11(13):6062-6071. PubMed ID: 30869731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-pressure studies of size dependent yield strength in rhenium diboride nanocrystals.
    Hu S; Hamilton SG; Turner CL; Robertson DD; Yan J; Kavner A; Kaner RB; Tolbert SH
    Nanoscale Horiz; 2024 Mar; 9(4):646-655. PubMed ID: 38426307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ observation of nanograin rotation and deformation in nacre.
    Li X; Xu ZH; Wang R
    Nano Lett; 2006 Oct; 6(10):2301-4. PubMed ID: 17034101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten.
    Wang J; Zeng Z; Weinberger CR; Zhang Z; Zhu T; Mao SX
    Nat Mater; 2015 Jun; 14(6):594-600. PubMed ID: 25751073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.