These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 24550462)

  • 1. Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy.
    Loenarz C; Sekirnik R; Thalhammer A; Ge W; Spivakovsky E; Mackeen MM; McDonough MA; Cockman ME; Kessler BM; Ratcliffe PJ; Wolf A; Schofield CJ
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4019-24. PubMed ID: 24550462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OGFOD1 catalyzes prolyl hydroxylation of RPS23 and is involved in translation control and stress granule formation.
    Singleton RS; Liu-Yi P; Formenti F; Ge W; Sekirnik R; Fischer R; Adam J; Pollard PJ; Wolf A; Thalhammer A; Loenarz C; Flashman E; Yamamoto A; Coleman ML; Kessler BM; Wappner P; Schofield CJ; Ratcliffe PJ; Cockman ME
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4031-6. PubMed ID: 24550447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth.
    Katz MJ; Acevedo JM; Loenarz C; Galagovsky D; Liu-Yi P; Pérez-Pepe M; Thalhammer A; Sekirnik R; Ge W; Melani M; Thomas MG; Simonetta S; Boccaccio GL; Schofield CJ; Cockman ME; Ratcliffe PJ; Wappner P
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4025-30. PubMed ID: 24550463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the ribosomal oxygenase OGFOD1 provides insights into the regio- and stereoselectivity of prolyl hydroxylases.
    Horita S; Scotti JS; Thinnes C; Mottaghi-Taromsari YS; Thalhammer A; Ge W; Aik W; Loenarz C; Schofield CJ; McDonough MA
    Structure; 2015 Apr; 23(4):639-52. PubMed ID: 25728928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal translational termination requires C4 lysyl hydroxylation of eRF1.
    Feng T; Yamamoto A; Wilkins SE; Sokolova E; Yates LA; Münzel M; Singh P; Hopkinson RJ; Fischer R; Cockman ME; Shelley J; Trudgian DC; Schödel J; McCullagh JS; Ge W; Kessler BM; Gilbert RJ; Frolova LY; Alkalaeva E; Ratcliffe PJ; Schofield CJ; Coleman ML
    Mol Cell; 2014 Feb; 53(4):645-54. PubMed ID: 24486019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosomal oxygenases are structurally conserved from prokaryotes to humans.
    Chowdhury R; Sekirnik R; Brissett NC; Krojer T; Ho CH; Ng SS; Clifton IJ; Ge W; Kershaw NJ; Fox GC; Muniz JRC; Vollmar M; Phillips C; Pilka ES; Kavanagh KL; von Delft F; Oppermann U; McDonough MA; Doherty AJ; Schofield CJ
    Nature; 2014 Jun; 510(7505):422-426. PubMed ID: 24814345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional insights into Saccharomyces cerevisiae Tpa1, a putative prolylhydroxylase influencing translation termination and transcription.
    Henri J; Rispal D; Bayart E; van Tilbeurgh H; Séraphin B; Graille M
    J Biol Chem; 2010 Oct; 285(40):30767-78. PubMed ID: 20630870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prolyl dihydroxylation of unassembled uS12/Rps23 regulates fungal hypoxic adaptation.
    Clasen SJ; Shao W; Gu H; Espenshade PJ
    Elife; 2017 Oct; 6():. PubMed ID: 29083304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosome-bound Pub1 modulates stop codon decoding during translation termination in yeast.
    Urakov VN; Mitkevich OV; Safenkova IV; Ter-Avanesyan MD
    FEBS J; 2017 Jun; 284(12):1914-1930. PubMed ID: 28467675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. uS3/Rps3 controls fidelity of translation termination and programmed stop codon readthrough in co-operation with eIF3.
    Poncová K; Wagner S; Jansen ME; Beznosková P; Gunišová S; Herrmannová A; Zeman J; Dong J; Valášek LS
    Nucleic Acids Res; 2019 Dec; 47(21):11326-11343. PubMed ID: 31642471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growing with the wind. Ribosomal protein hydroxylation and cell growth.
    Katz MJ; Acevedo JM; Wappner P
    Fly (Austin); 2014; 8(3):153-6. PubMed ID: 25482726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.
    Al-Hadid Q; White J; Clarke S
    Biochem Biophys Res Commun; 2016 Feb; 470(3):552-557. PubMed ID: 26801560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eukaryotic release factor 3 is required for multiple turnovers of peptide release catalysis by eukaryotic release factor 1.
    Eyler DE; Wehner KA; Green R
    J Biol Chem; 2013 Oct; 288(41):29530-8. PubMed ID: 23963452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome-wide investigation of stop codon readthrough in Saccharomyces cerevisiae.
    Mangkalaphiban K; He F; Ganesan R; Wu C; Baker R; Jacobson A
    PLoS Genet; 2021 Apr; 17(4):e1009538. PubMed ID: 33878104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional analysis of Nro1/Ett1: a protein involved in translation termination in S. cerevisiae and in O2-mediated gene control in S. pombe.
    Rispal D; Henri J; van Tilbeurgh H; Graille M; Séraphin B
    RNA; 2011 Jul; 17(7):1213-24. PubMed ID: 21610214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-translational hydroxylation by 2OG/Fe(II)-dependent oxygenases as a novel regulatory mechanism in bacteria.
    van Staalduinen LM; Jia Z
    Front Microbiol; 2014; 5():798. PubMed ID: 25642226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translation velocity determines the efficacy of engineered suppressor tRNAs on pathogenic nonsense mutations.
    Bharti N; Santos L; Davyt M; Behrmann S; Eichholtz M; Jimenez-Sanchez A; Hong JS; Rab A; Sorscher EJ; Albers S; Ignatova Z
    Nat Commun; 2024 Apr; 15(1):2957. PubMed ID: 38580646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes.
    Rospert S; Rakwalska M; Dubaquié Y
    Rev Physiol Biochem Pharmacol; 2005; 155():1-30. PubMed ID: 15928926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells.
    Beznosková P; Cuchalová L; Wagner S; Shoemaker CJ; Gunišová S; von der Haar T; Valášek LS
    PLoS Genet; 2013 Nov; 9(11):e1003962. PubMed ID: 24278036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination.
    Salas-Marco J; Bedwell DM
    Mol Cell Biol; 2004 Sep; 24(17):7769-78. PubMed ID: 15314182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.