BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 24550482)

  • 1. Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver.
    Pillai S; Behra R; Nestler H; Suter MJ; Sigg L; Schirmer K
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3490-5. PubMed ID: 24550482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of CRR1-targeted copper deficiency response in
    Wang S; Lv J; Zhang S
    Nanotoxicology; 2019 May; 13(4):447-454. PubMed ID: 30704326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking proteome responses with physiological and biochemical effects in herbicide-exposed Chlamydomonas reinhardtii.
    Nestler H; Groh KJ; Schönenberger R; Eggen RI; Suter MJ
    J Proteomics; 2012 Sep; 75(17):5370-85. PubMed ID: 22749931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome dynamics and early salt stress response of the photosynthetic organism Chlamydomonas reinhardtii.
    Mastrobuoni G; Irgang S; Pietzke M; Assmus HE; Wenzel M; Schulze WX; Kempa S
    BMC Genomics; 2012 May; 13():215. PubMed ID: 22651860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii.
    Navarro E; Piccapietra F; Wagner B; Marconi F; Kaegi R; Odzak N; Sigg L; Behra R
    Environ Sci Technol; 2008 Dec; 42(23):8959-64. PubMed ID: 19192825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium mediates the cellular response of Chlamydomonas reinhardtii to the emerging aquatic pollutant Triclosan.
    González-Pleiter M; Rioboo C; Reguera M; Abreu I; Leganés F; Cid Á; Fernández-Piñas F
    Aquat Toxicol; 2017 May; 186():50-66. PubMed ID: 28249228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole-genome re-sequencing and transcriptome reveal cadmium tolerance related genes and pathways in Chlamydomonas reinhardtii.
    Yu Z; Zhang T; Zhu Y
    Ecotoxicol Environ Saf; 2020 Mar; 191():110231. PubMed ID: 31981954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Differently Coated Silver Nanoparticles on the Photosynthesis of Chlamydomonas reinhardtii.
    Navarro E; Wagner B; Odzak N; Sigg L; Behra R
    Environ Sci Technol; 2015 Jul; 49(13):8041-7. PubMed ID: 26018638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of TiO
    Yu Z; Hao R; Zhang L; Zhu Y
    Ecotoxicol Environ Saf; 2018 Jul; 156():75-86. PubMed ID: 29533210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity mechanism of silver nanoparticles to Chlamydomonas reinhardtii: photosynthesis, oxidative stress, membrane permeability, and ultrastructure analysis.
    Zhao Z; Xu L; Wang Y; Li B; Zhang W; Li X
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):15032-15042. PubMed ID: 33222069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity of silver to two freshwater algae, Chlamydomonas reinhardtii and Pseudokirchneriella sub-capitata, grown under continuous culture conditions: influence of thiosulphate.
    Hiriart-Baer VP; Fortin C; Lee DY; Campbell PG
    Aquat Toxicol; 2006 Jun; 78(2):136-48. PubMed ID: 16621059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing bio-available silver released from silver nanoparticles embedded in silica layers using the green algae Chlamydomonas reinhardtii as bio-sensors.
    Pugliara A; Makasheva K; Despax B; Bayle M; Carles R; Benzo P; BenAssayag G; Pécassou B; Sancho MC; Navarro E; Echegoyen Y; Bonafos C
    Sci Total Environ; 2016 Sep; 565():863-871. PubMed ID: 26953143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity.
    Korkaric M; Xiao M; Behra R; Eggen RI
    Aquat Toxicol; 2015 Oct; 167():209-19. PubMed ID: 26349947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Carbon Nanotube-Metal Hybrid Particle Exposure to Freshwater Algae Chlamydomonas reinhardtii.
    Intrchom W; Thakkar M; Hamilton RF; Holian A; Mitra S
    Sci Rep; 2018 Oct; 8(1):15301. PubMed ID: 30333573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early alterations on photosynthesis-related parameters in Chlamydomonas reinhardtii cells exposed to atrazine: A multiple approach study.
    Esperanza M; Seoane M; Rioboo C; Herrero C; Cid Á
    Sci Total Environ; 2016 Jun; 554-555():237-45. PubMed ID: 26950638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of silver nanoparticles on the parameters of chlorophyll fluorescence and P700 reaction in the green alga Chlamydomonas reinhardtii].
    Matorin DN; Todorenko DA; Seĭfullina NKh; Zaiadan BK; Rubin AB
    Mikrobiologiia; 2014; 83(1):33-40. PubMed ID: 25423732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defense pathways of Chlamydomonas reinhardtii under silver nanoparticle stress: Extracellular biosorption, internalization and antioxidant genes.
    Xu L; Zhao Z; Yan Z; Zhou G; Zhang W; Wang Y; Li X
    Chemosphere; 2022 Mar; 291(Pt 1):132764. PubMed ID: 34752836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions.
    Nowicka B; Pluciński B; Kuczyńska P; Kruk J
    Ecotoxicol Environ Saf; 2016 Aug; 130():133-45. PubMed ID: 27104807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of silver nanoparticle toxicity to algae in soil via photosynthetic and flow-cytometric analyses.
    Nam SH; Il Kwak J; An YJ
    Sci Rep; 2018 Jan; 8(1):292. PubMed ID: 29321492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of nitric oxide signalling in response to salt stress in Chlamydomonas reinhardtii.
    Chen X; Tian D; Kong X; Chen Q; E F AA; Hu X; Jia A
    Planta; 2016 Sep; 244(3):651-69. PubMed ID: 27116428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.