These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24550488)

  • 1. Transcription factors IIS and IIF enhance transcription efficiency by differentially modifying RNA polymerase pausing dynamics.
    Ishibashi T; Dangkulwanich M; Coello Y; Lionberger TA; Lubkowska L; Ponticelli AS; Kashlev M; Bustamante C
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3419-24. PubMed ID: 24550488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by synergistic and independent mechanisms.
    Schweikhard V; Meng C; Murakami K; Kaplan CD; Kornberg RD; Block SM
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6642-7. PubMed ID: 24733897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription factors IIF and IIS and nucleoside triphosphate substrates as dynamic probes of the human RNA polymerase II mechanism.
    Zhang C; Burton ZF
    J Mol Biol; 2004 Sep; 342(4):1085-99. PubMed ID: 15351637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super elongation complex contains a TFIIF-related subcomplex.
    Knutson BA; Smith ML; Walker-Kopp N; Xu X
    Transcription; 2016 Aug; 7(4):133-40. PubMed ID: 27223670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of backtrack recovery by RNA polymerases I and II.
    Lisica A; Engel C; Jahnel M; Roldán É; Galburt EA; Cramer P; Grill SW
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2946-51. PubMed ID: 26929337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A link between transcription fidelity and pausing in vivo.
    Gamba P; James K; Zenkin N
    Transcription; 2017 Mar; 8(2):99-105. PubMed ID: 28072558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial control of human RNA polymerase II (RNAP II) pausing and transcript cleavage by transcription factor IIF, hepatitis delta antigen, and stimulatory factor II.
    Zhang C; Yan H; Burton ZF
    J Biol Chem; 2003 Dec; 278(50):50101-11. PubMed ID: 14506279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applied force provides insight into transcriptional pausing and its modulation by transcription factor NusA.
    Zhou J; Ha KS; La Porta A; Landick R; Block SM
    Mol Cell; 2011 Nov; 44(4):635-46. PubMed ID: 22099310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional interactions of the RNA polymerase II-interacting proteins Gdown1 and TFIIF.
    Mullen Davis MA; Guo J; Price DH; Luse DS
    J Biol Chem; 2014 Apr; 289(16):11143-11152. PubMed ID: 24596085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the mammalian transcription factors IIF, IIS, and IIX during elongation by RNA polymerase II.
    Bengal E; Flores O; Krauskopf A; Reinberg D; Aloni Y
    Mol Cell Biol; 1991 Mar; 11(3):1195-206. PubMed ID: 1996086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Widespread Backtracking by RNA Pol II Is a Major Effector of Gene Activation, 5' Pause Release, Termination, and Transcription Elongation Rate.
    Sheridan RM; Fong N; D'Alessandro A; Bentley DL
    Mol Cell; 2019 Jan; 73(1):107-118.e4. PubMed ID: 30503775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient and rapid nucleosome traversal by RNA polymerase II depends on a combination of transcript elongation factors.
    Luse DS; Spangler LC; Újvári A
    J Biol Chem; 2011 Feb; 286(8):6040-8. PubMed ID: 21177855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins.
    Lindstrom DL; Squazzo SL; Muster N; Burckin TA; Wachter KC; Emigh CA; McCleery JA; Yates JR; Hartzog GA
    Mol Cell Biol; 2003 Feb; 23(4):1368-78. PubMed ID: 12556496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner.
    Galburt EA; Grill SW; Wiedmann A; Lubkowska L; Choy J; Nogales E; Kashlev M; Bustamante C
    Nature; 2007 Apr; 446(7137):820-3. PubMed ID: 17361130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA polymerase I: a multifunctional molecular machine.
    Haag JR; Pikaard CS
    Cell; 2007 Dec; 131(7):1224-5. PubMed ID: 18160031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Misincorporation by RNA polymerase is a major source of transcription pausing in vivo.
    James K; Gamba P; Cockell SJ; Zenkin N
    Nucleic Acids Res; 2017 Feb; 45(3):1105-1113. PubMed ID: 28180286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dynamic model for processive transcription elongation and backtracking long pauses by multisubunit RNA polymerases.
    Xie P
    Proteins; 2012 Aug; 80(8):2020-34. PubMed ID: 22488837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic translocation barrier as an initial step in pausing by RNA polymerase II.
    Imashimizu M; Kireeva ML; Lubkowska L; Gotte D; Parks AR; Strathern JN; Kashlev M
    J Mol Biol; 2013 Feb; 425(4):697-712. PubMed ID: 23238253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pause sequences facilitate entry into long-lived paused states by reducing RNA polymerase transcription rates.
    Gabizon R; Lee A; Vahedian-Movahed H; Ebright RH; Bustamante CJ
    Nat Commun; 2018 Jul; 9(1):2930. PubMed ID: 30050038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during σ-dependent pausing.
    Zhilina E; Esyunina D; Brodolin K; Kulbachinskiy A
    Nucleic Acids Res; 2012 Apr; 40(7):3078-91. PubMed ID: 22140106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.