These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24550513)

  • 21. The C-terminal region of the plasmid partitioning protein TubY is a tetramer that can bind membranes and DNA.
    Hayashi I
    J Biol Chem; 2020 Dec; 295(51):17770-17780. PubMed ID: 33454013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of the tubulin/FtsZ-like protein TubZ from Pseudomonas bacteriophage ΦKZ.
    Aylett CH; Izoré T; Amos LA; Löwe J
    J Mol Biol; 2013 Jun; 425(12):2164-73. PubMed ID: 23528827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural polymorphism of the ParM filament and dynamic instability.
    Galkin VE; Orlova A; Rivera C; Mullins RD; Egelman EH
    Structure; 2009 Sep; 17(9):1253-64. PubMed ID: 19748346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural complexity of filaments formed from the actin and tubulin folds.
    Jiang S; Ghoshdastider U; Narita A; Popp D; Robinson RC
    Commun Integr Biol; 2016; 9(6):e1242538. PubMed ID: 28042378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The structure and assembly mechanism of a novel three-stranded tubulin filament that centers phage DNA.
    Zehr EA; Kraemer JA; Erb ML; Coker JK; Montabana EA; Pogliano J; Agard DA
    Structure; 2014 Apr; 22(4):539-48. PubMed ID: 24631461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy.
    Yajima H; Ogura T; Nitta R; Okada Y; Sato C; Hirokawa N
    J Cell Biol; 2012 Aug; 198(3):315-22. PubMed ID: 22851320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new tubRZ operon involved in the maintenance of the Bacillus sphaericus mosquitocidal plasmid pBsph.
    Ge Y; Hu X; Zhao N; Shi T; Cai Q; Yuan Z
    Microbiology (Reading); 2014 Jun; 160(Pt 6):1112-1124. PubMed ID: 24728200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing FtsZ and tubulin with C8-substituted GTP analogs reveals differences in their nucleotide binding sites.
    Läppchen T; Pinas VA; Hartog AF; Koomen GJ; Schaffner-Barbero C; Andreu JM; Trambaiolo D; Löwe J; Juhem A; Popov AV; den Blaauwen T
    Chem Biol; 2008 Feb; 15(2):189-99. PubMed ID: 18291323
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel actin filaments from Bacillus thuringiensis form nanotubules for plasmid DNA segregation.
    Jiang S; Narita A; Popp D; Ghoshdastider U; Lee LJ; Srinivasan R; Balasubramanian MK; Oda T; Koh F; Larsson M; Robinson RC
    Proc Natl Acad Sci U S A; 2016 Mar; 113(9):E1200-5. PubMed ID: 26873105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GTP hydrolysis of cell division protein FtsZ: evidence that the active site is formed by the association of monomers.
    Scheffers DJ; de Wit JG; den Blaauwen T; Driessen AJ
    Biochemistry; 2002 Jan; 41(2):521-9. PubMed ID: 11781090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution of cytomotive filaments: the cytoskeleton from prokaryotes to eukaryotes.
    Löwe J; Amos LA
    Int J Biochem Cell Biol; 2009 Feb; 41(2):323-9. PubMed ID: 18768164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The structure and assembly dynamics of plasmid actin AlfA imply a novel mechanism of DNA segregation.
    Polka JK; Kollman JM; Agard DA; Mullins RD
    J Bacteriol; 2009 Oct; 191(20):6219-30. PubMed ID: 19666709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polymerization of Ftsz, a bacterial homolog of tubulin. is assembly cooperative?
    Romberg L; Simon M; Erickson HP
    J Biol Chem; 2001 Apr; 276(15):11743-53. PubMed ID: 11152458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-Organization of FtsZ Polymers in Solution Reveals Spacer Role of the Disordered C-Terminal Tail.
    Huecas S; Ramírez-Aportela E; Vergoñós A; Núñez-Ramírez R; Llorca O; Díaz JF; Juan-Rodríguez D; Oliva MA; Castellen P; Andreu JM
    Biophys J; 2017 Oct; 113(8):1831-1844. PubMed ID: 29045877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An atomistic view of microtubule stabilization by GTP.
    Quiniou E; Guichard P; Perahia D; Marco S; Mouawad L
    Structure; 2013 May; 21(5):833-43. PubMed ID: 23623730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prokaryotic cytoskeletons: in situ and ex situ structures and cellular locations.
    Kim KW
    Antonie Van Leeuwenhoek; 2019 Feb; 112(2):145-157. PubMed ID: 30128891
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural insights into FtsZ protofilament formation.
    Oliva MA; Cordell SC; Löwe J
    Nat Struct Mol Biol; 2004 Dec; 11(12):1243-50. PubMed ID: 15558053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamic and structural analysis of microtubule assembly: the role of GTP hydrolysis.
    Vulevic B; Correia JJ
    Biophys J; 1997 Mar; 72(3):1357-75. PubMed ID: 9138581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The polymerization mechanism of the bacterial cell division protein FtsZ.
    Scheffers D; Driessen AJ
    FEBS Lett; 2001 Sep; 506(1):6-10. PubMed ID: 11591361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of key cytoskeletal protein tubulin revealed.
    Pennisi E
    Science; 1998 Jan; 279(5348):176-7. PubMed ID: 9446222
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.