These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 24550823)

  • 21. Development of flexible microelectrode arrays for recording cortical surface field potentials.
    Myllymaa S; Myllymaa K; Korhonen H; Gureviciene I; Djupsund K; Tanila H; Lappalainen R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3200-3. PubMed ID: 19163387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Explant Analysis of Utah Electrode Arrays Implanted in Human Cortex for Brain-Computer-Interfaces.
    Woeppel K; Hughes C; Herrera AJ; Eles JR; Tyler-Kabara EC; Gaunt RA; Collinger JL; Cui XT
    Front Bioeng Biotechnol; 2021; 9():759711. PubMed ID: 34950640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blood brain barrier (BBB)-disruption in intracortical silicon microelectrode implants.
    Bennett C; Samikkannu M; Mohammed F; Dietrich WD; Rajguru SM; Prasad A
    Biomaterials; 2018 May; 164():1-10. PubMed ID: 29477707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.
    Arreaga-Salas DE; Avendaño-Bolívar A; Simon D; Reit R; Garcia-Sandoval A; Rennaker RL; Voit W
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26614-23. PubMed ID: 26575084
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term stability of neural signals from microwire arrays implanted in common marmoset motor cortex and striatum.
    Debnath S; Prins NW; Pohlmeyer E; Mylavarapu R; Geng S; Sanchez JC; Prasad A
    Biomed Phys Eng Express; 2018 Sep; 4(5):. PubMed ID: 31011432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation.
    Jiang X; Sui X; Lu Y; Yan Y; Zhou C; Li L; Ren Q; Chai X
    J Neuroeng Rehabil; 2013 May; 10():48. PubMed ID: 23718827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays.
    Negi S; Bhandari R; Rieth L; Solzbacher F
    Biomed Mater; 2010 Feb; 5(1):15007. PubMed ID: 20124668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuroinflammation, oxidative stress, and blood-brain barrier (BBB) disruption in acute Utah electrode array implants and the effect of deferoxamine as an iron chelator on acute foreign body response.
    Bennett C; Mohammed F; Álvarez-Ciara A; Nguyen MA; Dietrich WD; Rajguru SM; Streit WJ; Prasad A
    Biomaterials; 2019 Jan; 188():144-159. PubMed ID: 30343257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chronic recording and electrochemical performance of amorphous silicon carbide-coated Utah electrode arrays implanted in rat motor cortex.
    Joshi-Imre A; Black BJ; Abbott J; Kanneganti A; Rihani R; Chakraborty B; Danda VR; Maeng J; Sharma R; Rieth L; Negi S; Pancrazio JJ; Cogan SF
    J Neural Eng; 2019 Aug; 16(4):046006. PubMed ID: 31013489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly Stable Glassy Carbon Interfaces for Long-Term Neural Stimulation and Low-Noise Recording of Brain Activity.
    Vomero M; Castagnola E; Ciarpella F; Maggiolini E; Goshi N; Zucchini E; Carli S; Fadiga L; Kassegne S; Ricci D
    Sci Rep; 2017 Jan; 7():40332. PubMed ID: 28084398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
    Wark HA; Sharma R; Mathews KS; Fernandez E; Yoo J; Christensen B; Tresco P; Rieth L; Solzbacher F; Normann RA; Tathireddy P
    J Neural Eng; 2013 Aug; 10(4):045003. PubMed ID: 23723133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays.
    Kozai TD; Du Z; Gugel ZV; Smith MA; Chase SM; Bodily LM; Caparosa EM; Friedlander RM; Cui XT
    J Neurosci Methods; 2015 Mar; 242():15-40. PubMed ID: 25542351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrode-Electrolyte Interface Impedance Characterization of Ultra-Miniaturized Microelectrode Arrays Over Materials and Geometries for Sub-Cellular and Cellular Sensing and Stimulation.
    Wang A; Jung D; Park J; Junek G; Wang H
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):248-252. PubMed ID: 30892229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film.
    Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR
    J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnesium-based biodegradable microelectrodes for neural recording.
    Zhang C; Wen TH; Razak KA; Lin J; Xu C; Seo C; Villafana E; Jimenez H; Liu H
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110614. PubMed ID: 32204062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microelectrode array recordings from the ventral roots in chronically implanted cats.
    Debnath S; Bauman MJ; Fisher LE; Weber DJ; Gaunt RA
    Front Neurol; 2014; 5():104. PubMed ID: 25071697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.