These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24551102)

  • 21. Flexible decision-making framework for developing operation protocol for water distribution systems.
    Abhijith GR; Ostfeld A
    J Environ Manage; 2022 Oct; 320():115817. PubMed ID: 36056480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling lead concentration in drinking water of residential plumbing pipes and hot water tanks.
    Chowdhury S; Kabir F; Mazumder MAJ; Zahir MH
    Sci Total Environ; 2018 Sep; 635():35-44. PubMed ID: 29660725
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contamination source identification in water distribution networks using convolutional neural network.
    Sun L; Yan H; Xin K; Tao T
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36786-36797. PubMed ID: 31745764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automatic generation of water distribution systems based on GIS data.
    Sitzenfrei R; Möderl M; Rauch W
    Environ Model Softw; 2013 Sep; 47():138-147. PubMed ID: 27667963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling DBPs formation in drinking water in residential plumbing pipes and hot water tanks.
    Chowdhury S; Rodriguez MJ; Sadiq R; Serodes J
    Water Res; 2011 Jan; 45(1):337-47. PubMed ID: 20732706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Risk-based framework for optimizing residual chlorine in large water distribution systems.
    Sharif MN; Farahat A; Haider H; Al-Zahrani MA; Rodriguez MJ; Sadiq R
    Environ Monit Assess; 2017 Jul; 189(7):307. PubMed ID: 28573352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparing THMs level in old and new water distribution systems; seasonal variation and probabilistic risk assessment.
    Mohammadi A; Faraji M; Ebrahimi AA; Nemati S; Abdolahnejad A; Miri M
    Ecotoxicol Environ Saf; 2020 Apr; 192():110286. PubMed ID: 32036101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of GIS in water distribution system assessment.
    Sargaonkar A; Islam R
    J Environ Sci Eng; 2009 Oct; 51(4):321-4. PubMed ID: 21117426
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robustness of Cyber-Physical Supply Networks in Cascading Failures.
    Mu D; Yue X; Ren H
    Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34207235
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using complex network analysis for water quality assessment in large water distribution systems.
    Sitzenfrei R
    Water Res; 2021 Aug; 201():117359. PubMed ID: 34171648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-Time Water Distribution System Hydraulic Modeling Using Prior Demand Information by Formal Bayesian Approach.
    Shao Y; Chu S; Zhang T; Yang YJ; Yu T
    J Water Resour Plan Manag; 2019; 145(12):. PubMed ID: 33623182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-time contamination zoning in water distribution networks for contamination emergencies: a case study.
    Bazargan-Lari MR; Taghipour S; Habibi M
    Environ Monit Assess; 2021 May; 193(6):336. PubMed ID: 33973066
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extension of pipe failure models to consider the absence of data from replaced pipes.
    Scheidegger A; Scholten L; Maurer M; Reichert P
    Water Res; 2013 Jul; 47(11):3696-705. PubMed ID: 23726706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Model-based approach for cyber-physical attack detection in water distribution systems.
    Housh M; Ohar Z
    Water Res; 2018 Aug; 139():132-143. PubMed ID: 29635150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of pressure gauge locations for water distribution systems using entropy theory.
    Yoo do G; Chang DE; Jun H; Kim JH
    Environ Monit Assess; 2012 Dec; 184(12):7309-22. PubMed ID: 22258740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comprehensive monitoring of drinking well water quality in Seoul metropolitan city, Korea.
    Kim KH; Susaya JP; Park CG; Uhm JH; Hur J
    Environ Monit Assess; 2013 Aug; 185(8):6353-78. PubMed ID: 23307049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the Simulation-Based Reliability of Complex Emergency Logistics Networks in Post-Accident Rescues.
    Wang W; Huang L; Liang X
    Int J Environ Res Public Health; 2018 Jan; 15(1):. PubMed ID: 29316614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep fuzzy mapping nonparametric model for real-time demand estimation in water distribution systems: A new perspective.
    Zhang Q; Yang J; Zhang W; Kumar M; Liu J; Liu J; Li X
    Water Res; 2023 Aug; 241():120145. PubMed ID: 37270943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and characterization of steady and occluded water in drinking water distribution systems.
    Tong H; Zhao P; Zhang H; Tian Y; Chen X; Zhao W; Li M
    Chemosphere; 2015 Jan; 119():1141-1147. PubMed ID: 25460754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water quality comparison between a supply network and household reservoirs in one of the oldest cities in Brazil.
    Nunes LGP; Oliveira MDV; de Souza AA; Lopes LF; Dias PCES; Nogueira GB; Souza MAA
    Int J Environ Health Res; 2019 Apr; 29(2):173-180. PubMed ID: 30296839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.