BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24551208)

  • 21. Low-cost telemedicine device performing cell and particle size measurement based on lens-free shadow imaging technology.
    Roy M; Seo D; Oh CH; Nam MH; Kim YJ; Seo S
    Biosens Bioelectron; 2015 May; 67():715-23. PubMed ID: 25459053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flow metering characterization within an electrical cell counting microfluidic device.
    Hassan U; Watkins NN; Edwards C; Bashir R
    Lab Chip; 2014 Apr; 14(8):1469-76. PubMed ID: 24615248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic single cell culture array.
    Di Carlo D; Wu LY; Lee LP
    Lab Chip; 2006 Nov; 6(11):1445-9. PubMed ID: 17066168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of microstructures on a dielectrophoretic chip for trapping particles.
    Chuang CH; Hsu YM; Wei CH
    Electrophoresis; 2009 Sep; 30(17):3044-3052. PubMed ID: 19676085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrating microfluidics and lensless imaging for point-of-care testing.
    Moon S; Keles HO; Ozcan A; Khademhosseini A; Haeggstrom E; Kuritzkes D; Demirci U
    Biosens Bioelectron; 2009 Jul; 24(11):3208-14. PubMed ID: 19467854
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfabricated platform for studying stem cell fates.
    Chin VI; Taupin P; Sanga S; Scheel J; Gage FH; Bhatia SN
    Biotechnol Bioeng; 2004 Nov; 88(3):399-415. PubMed ID: 15486946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Separation and capture of circulating tumor cells from whole blood using a bypass integrated microfluidic trap array.
    Yousang Yoon ; Sunki Cho ; Seonil Kim ; Eunsuk Choi ; Rae-Kwon Kim ; Su-Jae Lee ; Onejae Sul ; Seung-Beck Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4431-4. PubMed ID: 25570975
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integration of an optical CMOS sensor with a microfluidic channel allows a sensitive readout for biological assays in point-of-care tests.
    Van Dorst B; Brivio M; Van Der Sar E; Blom M; Reuvekamp S; Tanzi S; Groenhuis R; Adojutelegan A; Lous EJ; Frederix F; Stuyver LJ
    Biosens Bioelectron; 2016 Apr; 78():126-131. PubMed ID: 26599482
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting.
    Yao B; Luo GA; Feng X; Wang W; Chen LX; Wang YM
    Lab Chip; 2004 Dec; 4(6):603-7. PubMed ID: 15570372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Packaging commercial CMOS chips for lab on a chip integration.
    Datta-Chaudhuri T; Abshire P; Smela E
    Lab Chip; 2014 May; 14(10):1753-66. PubMed ID: 24682025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Array-based capture, distribution, counting and multiplexed assaying of beads on a centrifugal microfluidic platform.
    Burger R; Reith P; Kijanka G; Akujobi V; Abgrall P; Ducrée J
    Lab Chip; 2012 Apr; 12(7):1289-95. PubMed ID: 22334354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A copper oxide-ionic liquid/reduced graphene oxide composite sensor enabled by digital dispensing: Non-enzymatic paper-based microfluidic determination of creatinine in human blood serum.
    Boobphahom S; Ruecha N; Rodthongkum N; Chailapakul O; Remcho VT
    Anal Chim Acta; 2019 Nov; 1083():110-118. PubMed ID: 31493801
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Volumetric measurement of human red blood cells by MOSFET-based microfluidic gate.
    Guo J; Ai Y; Cheng Y; Li CM; Kang Y; Wang Z
    Electrophoresis; 2015 Aug; 36(16):1862-5. PubMed ID: 25349117
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasensitive Single-Molecule Enzyme Detection and Analysis Using a Polymer Microarray.
    Duan BK; Cavanagh PE; Li X; Walt DR
    Anal Chem; 2018 Mar; 90(5):3091-3098. PubMed ID: 29425025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid automated cell quantification on HIV microfluidic devices.
    Alyassin MA; Moon S; Keles HO; Manzur F; Lin RL; Hæggstrom E; Kuritzkes DR; Demirci U
    Lab Chip; 2009 Dec; 9(23):3364-9. PubMed ID: 19904402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of mammalian cell counts, cell size and cell health using the Moxi Z mini automated cell counter.
    Dittami GM; Sethi M; Rabbitt RD; Ayliffe HE
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22760092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells.
    Lim LS; Hu M; Huang MC; Cheong WC; Gan AT; Looi XL; Leong SM; Koay ES; Li MH
    Lab Chip; 2012 Nov; 12(21):4388-96. PubMed ID: 22930096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A portable and integrated instrument for cell manipulation by dielectrophoresis.
    Burgarella S; Di Bari M
    Electrophoresis; 2015 Jul; 36(13):1466-70. PubMed ID: 25808778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of Cryptosporidium parvum oocysts using a microfluidic device equipped with the SUS micromesh and FITC-labeled antibody.
    Taguchi T; Arakaki A; Takeyama H; Haraguchi S; Yoshino M; Kaneko M; Ishimori Y; Matsunaga T
    Biotechnol Bioeng; 2007 Feb; 96(2):272-80. PubMed ID: 16917954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-throughput and sensitive particle counting by a novel microfluidic differential resistive pulse sensor with multidetecting channels and a common reference channel.
    Song Y; Yang J; Pan X; Li D
    Electrophoresis; 2015 Feb; 36(4):495-501. PubMed ID: 25363672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.