BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24552045)

  • 1. Effects on nano zero-valent iron reactivity of interactions between hardness, alkalinity, and natural organic matter in reverse osmosis concentrate.
    Hwang Y; Shin HS
    J Environ Sci (China); 2013 Nov; 25(11):2177-84. PubMed ID: 24552045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of nitrate reduction by NaCl adsorption on a nano-zero-valent iron surface during a concentrate treatment for water reuse.
    Hwang Y; Kim D; Shin HS
    Environ Technol; 2015; 36(9-12):1178-87. PubMed ID: 25358487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron.
    Chen J; Xiu Z; Lowry GV; Alvarez PJ
    Water Res; 2011 Feb; 45(5):1995-2001. PubMed ID: 21232782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted removal of trichlorophenol in water by oleic acid-coated nanoscale palladium/zero-valent iron alginate beads.
    Chang J; Woo H; Ko MS; Lee J; Lee S; Yun ST; Lee S
    J Hazard Mater; 2015 Aug; 293():30-6. PubMed ID: 25819991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material.
    Kanel SR; Greneche JM; Choi H
    Environ Sci Technol; 2006 Mar; 40(6):2045-50. PubMed ID: 16570634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes.
    Laumann S; Micić V; Hofmann T
    Water Res; 2014 Mar; 50():70-9. PubMed ID: 24361704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron.
    Dong H; Lo IM
    Water Res; 2013 Jan; 47(1):419-27. PubMed ID: 23123051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid.
    Kim HS; Ahn JY; Kim C; Lee S; Hwang I
    Chemosphere; 2014 Oct; 113():93-100. PubMed ID: 25065795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism.
    Zhang X; Lin S; Chen Z; Megharaj M; Naidu R
    Water Res; 2011 May; 45(11):3481-8. PubMed ID: 21529878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid.
    Dong H; Lo IM
    Water Res; 2013 May; 47(7):2489-96. PubMed ID: 23466217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the capability of carboxymethyl cellulose-stabilized iron nanoparticles for the remediation of arsenite from water using the response surface methodology (RSM) model: Modeling and optimization.
    Mohammadi A; Nemati S; Mosaferi M; Abdollahnejhad A; Almasian M; Sheikhmohammadi A
    J Contam Hydrol; 2017 Aug; 203():85-92. PubMed ID: 28709527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal.
    Giasuddin AB; Kanel SR; Choi H
    Environ Sci Technol; 2007 Mar; 41(6):2022-7. PubMed ID: 17410800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of nanoscale zero-valent iron/ordered mesoporous carbon for adsorption and synergistic reduction of nitrobenzene.
    Ling X; Li J; Zhu W; Zhu Y; Sun X; Shen J; Han W; Wang L
    Chemosphere; 2012 May; 87(6):655-60. PubMed ID: 22365414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental design and response surface modelling for optimization of vat dye from water by nano zero valent iron (NZVI).
    Arabi S; Sohrabi MR
    Acta Chim Slov; 2013; 60(4):853-60. PubMed ID: 24362989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium removal using resin supported nanoscale zero-valent iron.
    Fu F; Ma J; Xie L; Tang B; Han W; Lin S
    J Environ Manage; 2013 Oct; 128():822-7. PubMed ID: 23867839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deactivation of nanoscale zero-valent iron by humic acid and by retention in water.
    Kim DG; Hwang YH; Shin HS; Ko SO
    Environ Technol; 2013; 34(9-12):1625-35. PubMed ID: 24191498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp.
    Liu Y; Li S; Chen Z; Megharaj M; Naidu R
    Chemosphere; 2014 Aug; 108():426-32. PubMed ID: 24630453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of simazine from aqueous solutions by diatomite-supported nanosized zero-valent iron composite materials.
    Sun Z; Zheng S; Ayoko GA; Frost RL; Xi Y
    J Hazard Mater; 2013 Dec; 263 Pt 2():768-77. PubMed ID: 24231330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of hardness and alkalinity on the removal of arsenic(V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron.
    Mak MS; Rao P; Lo IM
    Water Res; 2009 Sep; 43(17):4296-304. PubMed ID: 19580986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron.
    Shi LN; Zhang X; Chen ZL
    Water Res; 2011 Jan; 45(2):886-92. PubMed ID: 20950833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.