These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24552065)

  • 1. Quantification of changes in zero valent iron morphology using X-ray computed tomography.
    Luo P; Bailey EH; Mooney SJ
    J Environ Sci (China); 2013 Nov; 25(11):2344-51. PubMed ID: 24552065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling.
    Weber A; Ruhl AS; Amos RT
    J Contam Hydrol; 2013 Aug; 151():68-82. PubMed ID: 23743511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater.
    Phillips DH; Van Nooten T; Bastiaens L; Russell MI; Dickson K; Plant S; Ahad JM; Newton T; Elliot T; Kalin RM
    Environ Sci Technol; 2010 May; 44(10):3861-9. PubMed ID: 20420442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permeable reactive barrier of coarse sand-supported zero valent iron for the removal of 2,4-dichlorophenol in groundwater.
    Gao W; Zhang Y; Zhang X; Duan Z; Wang Y; Qin C; Hu X; Wang H; Chang S
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16889-96. PubMed ID: 26104904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The multi-process reaction model and underlying mechanisms of 2,4,6-trichlorophenol removal in lab-scale biochar-microorganism augmented ZVI PRBs and field-scale PRBs performance.
    Wang W; Gong T; Li H; Liu Y; Dong Q; Zan R; Wu Y
    Water Res; 2022 Jun; 217():118422. PubMed ID: 35413559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-pumping reactive wells filled with mixing nano and micro zero-valent iron for nitrate removal from groundwater: Vertical, horizontal, and slanted wells.
    Hosseini SM; Tosco T; Ataie-Ashtiani B; Simmons CT
    J Contam Hydrol; 2018 Mar; 210():50-64. PubMed ID: 29519731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimate of the optimum weight ratio in zero-valent iron/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater.
    CalabrĂ² PS; Moraci N; Suraci P
    J Hazard Mater; 2012 Mar; 207-208():111-6. PubMed ID: 21885195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of zero-valent iron as a permeable reactive barrier for long-term removal of arsenic compounds from synthetic water.
    Lee KJ; Lee Y; Yoon J; Kamala-Kannan S; Park SM; Oh BT
    Environ Technol; 2009 Dec; 30(13):1425-34. PubMed ID: 20088207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geochemical stability of zero-valent iron modified raw wheat straw innovatively applicated to in situ permeable reactive barrier: N
    Guo C; Qi L; Bai Y; Yin L; Li L; Zhang W
    Ecotoxicol Environ Saf; 2021 Aug; 224():112649. PubMed ID: 34425538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term performance evaluation of zero-valent iron amended permeable reactive barriers for groundwater remediation - A mechanistic approach.
    Lawrinenko M; Kurwadkar S; Wilkin RT
    Geosci Front; 2023 Mar; 14(2):1-13. PubMed ID: 36760680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zero-valent iron for the abatement of arsenate and selenate from flowback water of hydraulic fracturing.
    Sun Y; Chen SS; Tsang DCW; Graham NJD; Ok YS; Feng Y; Li XD
    Chemosphere; 2017 Jan; 167():163-170. PubMed ID: 27718428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the long-term performance of zero-valent iron using a spatio-temporal approach for iron aging.
    Kouznetsova I; Bayer P; Ebert M; Finkel M
    J Contam Hydrol; 2007 Feb; 90(1-2):58-80. PubMed ID: 17113680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of As from groundwater by in situ bioprecipitation and zero-valent iron.
    Tkaczynska A
    Water Sci Technol; 2013; 68(9):2055-60. PubMed ID: 24225108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers.
    Moraci N; CalabrĂ² PS
    J Environ Manage; 2010 Nov; 91(11):2336-41. PubMed ID: 20643500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remediation of arsenic-contaminated groundwater using media-injected permeable reactive barriers with a modified montmorillonite: sand tank studies.
    Luo X; Liu H; Huang G; Li Y; Zhao Y; Li X
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):870-7. PubMed ID: 26347414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical depassivation of zero-valent iron for trichloroethene reduction.
    Chen L; Jin S; Fallgren PH; Swoboda-Colberg NG; Liu F; Colberg PJ
    J Hazard Mater; 2012 Nov; 239-240():265-9. PubMed ID: 23009798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zero valent iron remediation of a mixed brominated ethene contaminated groundwater.
    Cohen EL; Patterson BM; McKinley AJ; Prommer H
    J Contam Hydrol; 2009 Jan; 103(3-4):109-18. PubMed ID: 18990465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of zeolites in permeable reactive barriers (PRBs) for in-situ groundwater remediation: A critical review.
    Zhang Y; Cao B; Yin H; Meng L; Jin W; Wang F; Xu J; Al-Tabbaa A
    Chemosphere; 2022 Dec; 308(Pt 1):136290. PubMed ID: 36058373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of flow rate and concentration on nitrobenzene removal in abiotic and biotic zero-valent iron columns.
    Yin W; Wu J; Huang W; Li Y; Jiang G
    Sci Total Environ; 2016 Aug; 560-561():12-8. PubMed ID: 27093118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of mineral fouling on hydraulic behavior of permeable reactive barriers.
    Lin L; Benson CH; Lawson EM
    Ground Water; 2005; 43(4):582-96. PubMed ID: 16029183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.