These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 24552180)

  • 1. Mycobacterium leprae intracellular survival relies on cholesterol accumulation in infected macrophages: a potential target for new drugs for leprosy treatment.
    Mattos KA; Oliveira VC; Berrêdo-Pinho M; Amaral JJ; Antunes LC; Melo RC; Acosta CC; Moura DF; Olmo R; Han J; Rosa PS; Almeida PE; Finlay BB; Borchers CH; Sarno EN; Bozza PT; Atella GC; Pessolani MC
    Cell Microbiol; 2014 Jun; 16(6):797-815. PubMed ID: 24552180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Essential Role of Cholesterol Metabolism in the Intracellular Survival of Mycobacterium leprae Is Not Coupled to Central Carbon Metabolism and Energy Production.
    Marques MA; Berrêdo-Pinho M; Rosa TL; Pujari V; Lemes RM; Lery LM; Silva CA; Guimarães AC; Atella GC; Wheat WH; Brennan PJ; Crick DC; Belisle JT; Pessolani MC
    J Bacteriol; 2015 Dec; 197(23):3698-707. PubMed ID: 26391209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term culture of multibacillary leprosy macrophages isolated from skin lesions: a new model to study Mycobacterium leprae-human cell interaction.
    Moura DF; Teles RM; Ribeiro-Carvalho MM; Teles RB; Santos IM; Ferreira H; Fulco TO; Nery JA; Sampaio EP; Sarno EN
    Br J Dermatol; 2007 Aug; 157(2):273-83. PubMed ID: 17553031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The function of peroxisome proliferator-activated receptors PPAR-γ and PPAR-δ in Mycobacterium leprae-induced foam cell formation in host macrophages.
    Luo Y; Tanigawa K; Kawashima A; Ishido Y; Ishii N; Suzuki K
    PLoS Negl Trop Dis; 2020 Oct; 14(10):e0008850. PubMed ID: 33075048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Essential role of hormone-sensitive lipase (HSL) in the maintenance of lipid storage in Mycobacterium leprae-infected macrophages.
    Tanigawa K; Degang Y; Kawashima A; Akama T; Yoshihara A; Ishido Y; Makino M; Ishii N; Suzuki K
    Microb Pathog; 2012 May; 52(5):285-91. PubMed ID: 22553833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes.
    Mattos KA; Lara FA; Oliveira VG; Rodrigues LS; D'Avila H; Melo RC; Manso PP; Sarno EN; Bozza PT; Pessolani MC
    Cell Microbiol; 2011 Feb; 13(2):259-73. PubMed ID: 20955239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The formation of lipid droplets favors intracellular Mycobacterium leprae survival in SW-10, non-myelinating Schwann cells.
    Jin SH; An SK; Lee SB
    PLoS Negl Trop Dis; 2017 Jun; 11(6):e0005687. PubMed ID: 28636650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. STING-Dependent 2'-5' Oligoadenylate Synthetase-Like Production Is Required for Intracellular Mycobacterium leprae Survival.
    de Toledo-Pinto TG; Ferreira AB; Ribeiro-Alves M; Rodrigues LS; Batista-Silva LR; Silva BJ; Lemes RM; Martinez AN; Sandoval FG; Alvarado-Arnez LE; Rosa PS; Shannon EJ; Pessolani MC; Pinheiro RO; Antunes SL; Sarno EN; Lara FA; Williams DL; Ozório Moraes M
    J Infect Dis; 2016 Jul; 214(2):311-20. PubMed ID: 27190175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antigenic protein from Mycobacterium leprae released in macrophages in vitro as indicator of viability of bacteria.
    Nair I; Mahadevan PR
    Int J Lepr Other Mycobact Dis; 1990 Sep; 58(3):540-7. PubMed ID: 2205688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of indoleamine 2, 3-dioxygenase in lepromatous leprosy immunosuppression.
    de Souza Sales J; Lara FA; Amadeu TP; de Oliveira Fulco T; da Costa Nery JA; Sampaio EP; Pinheiro RO; Sarno EN
    Clin Exp Immunol; 2011 Aug; 165(2):251-63. PubMed ID: 21592112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reductive Power Generated by
    Rosa TLSA; Marques MAM; DeBoard Z; Hutchins K; Silva CAA; Montague CR; Yuan T; Amaral JJ; Atella GC; Rosa PS; Mattos KA; VanderVen BC; Lahiri R; Sampson NS; Brennan PJ; Belisle JT; Pessolani MCV; Berrêdo-Pinho M
    Front Cell Infect Microbiol; 2021; 11():709972. PubMed ID: 34395315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IL-37 and leprosy: A novel cytokine involved in the host response to Mycobacterium leprae infection.
    de Sousa JR; Prudente RL; Dias Junior LB; Oliveira Carneiro FR; Sotto MN; Simões Quaresma JA
    Cytokine; 2018 Jun; 106():89-94. PubMed ID: 29111085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clofazimine modulates the expression of lipid metabolism proteins in Mycobacterium leprae-infected macrophages.
    Degang Y; Akama T; Hara T; Tanigawa K; Ishido Y; Gidoh M; Makino M; Ishii N; Suzuki K
    PLoS Negl Trop Dis; 2012; 6(12):e1936. PubMed ID: 23236531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular determination of Mycobacterium leprae viability by use of real-time PCR.
    Martinez AN; Lahiri R; Pittman TL; Scollard D; Truman R; Moraes MO; Williams DL
    J Clin Microbiol; 2009 Jul; 47(7):2124-30. PubMed ID: 19439537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of adipose differentiation-related protein (ADRP) and perilipin in macrophages infected with Mycobacterium leprae.
    Tanigawa K; Suzuki K; Nakamura K; Akama T; Kawashima A; Wu H; Hayashi M; Takahashi S; Ikuyama S; Ito T; Ishii N
    FEMS Microbiol Lett; 2008 Dec; 289(1):72-9. PubMed ID: 19054096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in vitro model for the lepromatous leprosy granuloma: fate of Mycobacterium leprae from target macrophages after interaction with normal and activated effector macrophages.
    Hagge DA; Ray NA; Krahenbuhl JL; Adams LB
    J Immunol; 2004 Jun; 172(12):7771-9. PubMed ID: 15187161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mycobacterium leprae-induced Insulin-like Growth Factor I attenuates antimicrobial mechanisms, promoting bacterial survival in macrophages.
    Batista-Silva LR; Rodrigues LS; Vivarini Ade C; Costa Fda M; Mattos KA; Costa MR; Rosa PS; Toledo-Pinto TG; Dias AA; Moura DF; Sarno EN; Lopes UG; Pessolani MC
    Sci Rep; 2016 Jun; 6():27632. PubMed ID: 27282338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T-cell regulation in lepromatous leprosy.
    Bobosha K; Wilson L; van Meijgaarden KE; Bekele Y; Zewdie M; van der Ploeg-van Schip JJ; Abebe M; Hussein J; Khadge S; Neupane KD; Hagge DA; Jordanova ES; Aseffa A; Ottenhoff TH; Geluk A
    PLoS Negl Trop Dis; 2014 Apr; 8(4):e2773. PubMed ID: 24722473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in the membrane of macrophages from leprosy patients.
    Birdi TJ; Mistry NF; Mahadevan PR; Antia NH
    Infect Immun; 1983 Jul; 41(1):121-7. PubMed ID: 6345387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular Mycobacterium leprae Utilizes Host Glucose as a Carbon Source in Schwann Cells.
    Borah K; Girardi KDCV; Mendum TA; Lery LMS; Beste DJV; Lara FA; Pessolani MCV; McFadden J
    mBio; 2019 Dec; 10(6):. PubMed ID: 31848273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.