These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 24552402)
1. Characterization of poly(ε-caprolactone)-based nanocomposites containing hydroxytyrosol for active food packaging. Beltrán A; Valente AJ; Jiménez A; Garrigós MC J Agric Food Chem; 2014 Mar; 62(10):2244-52. PubMed ID: 24552402 [TBL] [Abstract][Full Text] [Related]
2. Development of an antimicrobial material based on a nanocomposite cellulose acetate film for active food packaging. Rodríguez FJ; Torres A; Peñaloza Á; Sepúlveda H; Galotto MJ; Guarda A; Bruna J Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(3):342-53. PubMed ID: 24345085 [TBL] [Abstract][Full Text] [Related]
3. Effect of clay concentration on morphology and properties of hydroxypropylmethylcellulose films. Mondal D; Bhowmick B; Mollick MM; Maity D; Mukhopadhyay A; Rana D; Chattopadhyay D Carbohydr Polym; 2013 Jul; 96(1):57-63. PubMed ID: 23688454 [TBL] [Abstract][Full Text] [Related]
4. Use of nanoclay platelets in food packaging materials: technical and cytotoxicity approach. Jorda-Beneyto M; Ortuño N; Devis A; Aucejo S; Puerto M; Gutiérrez-Praena D; Houtman J; Pichardo S; Maisanaba S; Jos A Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(3):354-63. PubMed ID: 24328862 [TBL] [Abstract][Full Text] [Related]
5. Biodegradation and bioresorption of poly(ɛ-caprolactone) nanocomposite scaffolds. Mkhabela V; Ray SS Int J Biol Macromol; 2015 Aug; 79():186-92. PubMed ID: 25952165 [TBL] [Abstract][Full Text] [Related]
6. Antimicrobial nanostructured starch based films for packaging. Abreu AS; Oliveira M; de Sá A; Rodrigues RM; Cerqueira MA; Vicente AA; Machado AV Carbohydr Polym; 2015 Sep; 129():127-34. PubMed ID: 26050897 [TBL] [Abstract][Full Text] [Related]
7. Biodegradable polymer nanocomposites: the role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. Marras SI; Kladi KP; Tsivintzelis I; Zuburtikudis I; Panayiotou C Acta Biomater; 2008 May; 4(3):756-65. PubMed ID: 18294944 [TBL] [Abstract][Full Text] [Related]
8. Dispersion morphology and correlation to moduli using buckling metrology in clay-biopolymer nanocomposite thin films. Yuan H; Singh G; Raghavan D; Al-Enizi AM; Elzatahry A; Karim A ACS Appl Mater Interfaces; 2014 Aug; 6(16):13378-88. PubMed ID: 25062299 [TBL] [Abstract][Full Text] [Related]
9. Investigation on sodium benzoate release from poly(butylene adipate-co-terephthalate)/organoclay/sodium benzoate based nanocomposite film and their antimicrobial activity. Mondal D; Bhowmick B; Maity D; Mollick MM; Rana D; Rangarajan V; Sen R; Chattopadhyay D J Food Sci; 2015 Mar; 80(3):E602-9. PubMed ID: 25644560 [TBL] [Abstract][Full Text] [Related]
10. In vitro biocompatibility and antimicrobial activity of poly(ε-caprolactone)/montmorillonite nanocomposites. Corrales T; Larraza I; Catalina F; Portolés T; Ramírez-Santillán C; Matesanz M; Abrusci C Biomacromolecules; 2012 Dec; 13(12):4247-56. PubMed ID: 23153018 [TBL] [Abstract][Full Text] [Related]
11. PMMA-grafted nanoclay as novel filler for dental adhesives. Atai M; Solhi L; Nodehi A; Mirabedini SM; Kasraei S; Akbari K; Babanzadeh S Dent Mater; 2009 Mar; 25(3):339-47. PubMed ID: 18829096 [TBL] [Abstract][Full Text] [Related]
12. Preparation and properties of polypropylene/clay nanocomposites for food packaging. Choi RN; Cheigh CI; Lee SY; Chung MS J Food Sci; 2011 Oct; 76(8):N62-7. PubMed ID: 22417600 [TBL] [Abstract][Full Text] [Related]
13. Rheological and thermal properties of polylactide/silicate nanocomposites films. Ahmed J; Varshney SK; Auras R J Food Sci; 2010 Mar; 75(2):N17-24. PubMed ID: 20492249 [TBL] [Abstract][Full Text] [Related]
14. Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Ramos M; Jiménez A; Peltzer M; Garrigós MC Food Chem; 2014 Nov; 162():149-55. PubMed ID: 24874370 [TBL] [Abstract][Full Text] [Related]
15. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) based nanocomposites: influence of the microstructure on the barrier properties. Crétois R; Follain N; Dargent E; Soulestin J; Bourbigot S; Marais S; Lebrun L Phys Chem Chem Phys; 2015 May; 17(17):11313-23. PubMed ID: 25848646 [TBL] [Abstract][Full Text] [Related]
16. Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites. Fu S; Guo G; Gong C; Zeng S; Liang H; Luo F; Zhang X; Zhao X; Wei Y; Qian Z J Phys Chem B; 2009 Dec; 113(52):16518-25. PubMed ID: 19947637 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of chitosan/montmorillonite nanocomposites for application as edible coating. Reis CA; Júnior MG; Moreira FKV; Marconcini JM; Vaz LEVSB Food Sci Technol Int; 2023 Jan; 29(1):25-39. PubMed ID: 34756149 [TBL] [Abstract][Full Text] [Related]
19. Hard and flexible nanocomposite coatings using nanoclay-filled hyperbranched polymers. Fogelström L; Malmström E; Johansson M; Hult A ACS Appl Mater Interfaces; 2010 Jun; 2(6):1679-84. PubMed ID: 20509674 [TBL] [Abstract][Full Text] [Related]
20. Electrospun composite matrices of poly(ε-caprolactone)-montmorillonite made using tenside free Pickering emulsions. Samanta A; Takkar S; Kulshreshtha R; Nandan B; Srivastava RK Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():685-91. PubMed ID: 27612762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]