These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 24552679)
1. Validation of a clinical assessment of spectral-ripple resolution for cochlear implant users. Drennan WR; Anderson ES; Won JH; Rubinstein JT Ear Hear; 2014; 35(3):e92-8. PubMed ID: 24552679 [TBL] [Abstract][Full Text] [Related]
2. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization. Winn MB; Won JH; Moon IJ Ear Hear; 2016; 37(6):e377-e390. PubMed ID: 27438871 [TBL] [Abstract][Full Text] [Related]
3. Spectral-ripple resolution correlates with speech reception in noise in cochlear implant users. Won JH; Drennan WR; Rubinstein JT J Assoc Res Otolaryngol; 2007 Sep; 8(3):384-92. PubMed ID: 17587137 [TBL] [Abstract][Full Text] [Related]
4. Psychoacoustic abilities associated with music perception in cochlear implant users. Won JH; Drennan WR; Kang RS; Rubinstein JT Ear Hear; 2010 Dec; 31(6):796-805. PubMed ID: 20595901 [TBL] [Abstract][Full Text] [Related]
5. Objective assessment of spectral ripple discrimination in cochlear implant listeners using cortical evoked responses to an oddball paradigm. Lopez Valdes A; Mc Laughlin M; Viani L; Walshe P; Smith J; Zeng FG; Reilly RB PLoS One; 2014; 9(3):e90044. PubMed ID: 24599314 [TBL] [Abstract][Full Text] [Related]
6. Relationship between behavioral and physiological spectral-ripple discrimination. Won JH; Clinard CG; Kwon S; Dasika VK; Nie K; Drennan WR; Tremblay KL; Rubinstein JT J Assoc Res Otolaryngol; 2011 Jun; 12(3):375-93. PubMed ID: 21271274 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the Spectral-Temporally Modulated Ripple Test With the Arizona Biomedical Institute Sentence Test in Cochlear Implant Users. Lawler M; Yu J; Aronoff JM Ear Hear; 2017; 38(6):760-766. PubMed ID: 28957975 [TBL] [Abstract][Full Text] [Related]
8. Nonlinguistic Outcome Measures in Adult Cochlear Implant Users Over the First Year of Implantation. Drennan WR; Won JH; Timme AO; Rubinstein JT Ear Hear; 2016; 37(3):354-64. PubMed ID: 26656317 [TBL] [Abstract][Full Text] [Related]
9. Psychoacoustic performance and music and speech perception in prelingually deafened children with cochlear implants. Jung KH; Won JH; Drennan WR; Jameyson E; Miyasaki G; Norton SJ; Rubinstein JT Audiol Neurootol; 2012; 17(3):189-97. PubMed ID: 22398954 [TBL] [Abstract][Full Text] [Related]
10. Relationship between channel interaction and spectral-ripple discrimination in cochlear implant users. Jones GL; Won JH; Drennan WR; Rubinstein JT J Acoust Soc Am; 2013 Jan; 133(1):425-33. PubMed ID: 23297914 [TBL] [Abstract][Full Text] [Related]
11. Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination in cochlear-implant users. Anderson ES; Oxenham AJ; Nelson PB; Nelson DA J Acoust Soc Am; 2012 Dec; 132(6):3925-34. PubMed ID: 23231122 [TBL] [Abstract][Full Text] [Related]
12. Evidence of across-channel processing for spectral-ripple discrimination in cochlear implant listeners. Won JH; Jones GL; Drennan WR; Jameyson EM; Rubinstein JT J Acoust Soc Am; 2011 Oct; 130(4):2088-97. PubMed ID: 21973363 [TBL] [Abstract][Full Text] [Related]
13. Development and validation of the University of Washington Clinical Assessment of Music Perception test. Kang R; Nimmons GL; Drennan W; Longnion J; Ruffin C; Nie K; Won JH; Worman T; Yueh B; Rubinstein J Ear Hear; 2009 Aug; 30(4):411-8. PubMed ID: 19474735 [TBL] [Abstract][Full Text] [Related]
14. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearing. Davies-Venn E; Nelson P; Souza P J Acoust Soc Am; 2015 Jul; 138(1):492-503. PubMed ID: 26233047 [TBL] [Abstract][Full Text] [Related]
15. Recognition of speech presented at soft to loud levels by adult cochlear implant recipients of three cochlear implant systems. Firszt JB; Holden LK; Skinner MW; Tobey EA; Peterson A; Gaggl W; Runge-Samuelson CL; Wackym PA Ear Hear; 2004 Aug; 25(4):375-87. PubMed ID: 15292777 [TBL] [Abstract][Full Text] [Related]
16. Spectral peak resolution and speech recognition in quiet: normal hearing, hearing impaired, and cochlear implant listeners. Henry BA; Turner CW; Behrens A J Acoust Soc Am; 2005 Aug; 118(2):1111-21. PubMed ID: 16158665 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of Mandarin Chinese Speech Recognition in Adults with Cochlear Implants Using the Spectral Ripple Discrimination Test. Dai C; Zhao Z; Shen W; Zhang D; Lei G; Qiao Y; Yang S Med Sci Monit; 2018 May; 24():3557-3563. PubMed ID: 29806954 [TBL] [Abstract][Full Text] [Related]
18. Comparing spatial tuning curves, spectral ripple resolution, and speech perception in cochlear implant users. Anderson ES; Nelson DA; Kreft H; Nelson PB; Oxenham AJ J Acoust Soc Am; 2011 Jul; 130(1):364-75. PubMed ID: 21786905 [TBL] [Abstract][Full Text] [Related]
19. Spectrotemporal Modulation Discrimination in Infants With Normal Hearing. Noble AR; Resnick J; Broncheau M; Klotz S; Rubinstein JT; Werner LA; Horn DL Ear Hear; 2023 Jan-Feb 01; 44(1):109-117. PubMed ID: 36218270 [TBL] [Abstract][Full Text] [Related]
20. Application of Noise Reduction Algorithm ClearVoice in Cochlear Implant Processing: Effects on Noise Tolerance and Speech Intelligibility in Noise in Relation to Spectral Resolution. Dingemanse JG; Goedegebure A Ear Hear; 2015; 36(3):357-67. PubMed ID: 25479412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]