These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24552840)

  • 1. Multifarious selection through environmental change: acidity and predator-mediated adaptive divergence in the moor frog (Rana arvalis).
    Egea-Serrano A; Hangartner S; Laurila A; Räsänen K
    Proc Biol Sci; 2014 Apr; 281(1780):20133266. PubMed ID: 24552840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive divergence of the moor frog (Rana arvalis) along an acidification gradient.
    Hangartner S; Laurila A; Räsänen K
    BMC Evol Biol; 2011 Dec; 11():366. PubMed ID: 22182445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Context dependent variation in corticosterone and phenotypic divergence of Rana arvalis populations along an acidification gradient.
    Mausbach J; Laurila A; Räsänen K
    BMC Ecol Evol; 2022 Feb; 22(1):11. PubMed ID: 35123416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population divergence in growth rate and antipredator defences in Rana arvalis.
    Laurila A; Pakkasmaa S; Merilä J
    Oecologia; 2006 Apr; 147(4):585-95. PubMed ID: 16323018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The quantitative genetic basis of adaptive divergence in the moor frog (Rana arvalis) and its implications for gene flow.
    Hangartner S; Laurila A; Räsänen K
    J Evol Biol; 2012 Aug; 25(8):1587-99. PubMed ID: 22686568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive divergence in moor frog (Rana arvalis) populations along an acidification gradient: inferences from Q(st) -F(st) correlations.
    Hangartner S; Laurila A; Räsänen K
    Evolution; 2012 Mar; 66(3):867-881. PubMed ID: 22380445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic basis of adaptive maternal effects: egg jelly water balance mediates embryonic adaptation to acidity in Rana arvalis.
    Shu L; Suter MJ; Laurila A; Räsänen K
    Oecologia; 2015 Nov; 179(3):617-28. PubMed ID: 25983113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term responses of Rana arvalis tadpoles to pH and predator stress: adaptive divergence in behavioural and physiological plasticity?
    Scaramella N; Mausbach J; Laurila A; Stednitz S; Räsänen K
    J Comp Physiol B; 2022 Sep; 192(5):669-682. PubMed ID: 35857071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. I. Local adaptation.
    Räsänen K; Laurila A; Merilä J
    Evolution; 2003 Feb; 57(2):352-62. PubMed ID: 12683531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid stress mediated adaptive divergence in ion channel function during embryogenesis in Rana arvalis.
    Shu L; Laurila A; Räsänen K
    Sci Rep; 2015 Sep; 5():14201. PubMed ID: 26381453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible architecture of inducible morphological plasticity.
    Kishida O; Nishimura K
    J Anim Ecol; 2006 May; 75(3):705-12. PubMed ID: 16689953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inducible offences affect predator-prey interactions and life-history plasticity in both predators and prey.
    Kishida O; Costa Z; Tezuka A; Michimae H
    J Anim Ecol; 2014 Jul; 83(4):899-906. PubMed ID: 24320092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Habitat specialization and adaptive phenotypic divergence of anuran populations.
    Van Buskirk J; Arioli M
    J Evol Biol; 2005 May; 18(3):596-608. PubMed ID: 15842489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predator-induced phenotypic plasticity in tadpoles: extension or innovation?
    Kraft PG; Franklin CE; Blows MW
    J Evol Biol; 2006 Mar; 19(2):450-8. PubMed ID: 16599921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interacting effects of predation risk and resource level on escape speed of amphibian larvae along a latitudinal gradient.
    Lindgren B; Orizaola G; Laurila A
    J Evol Biol; 2018 Aug; 31(8):1216-1226. PubMed ID: 29802672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting small environmental differences: risk-response curves for predator-induced behavior and morphology.
    Schoeppner NM; Relyea RA
    Oecologia; 2008 Jan; 154(4):743-54. PubMed ID: 17922146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Costs and benefits of defences induced by predators differing in dangerousness.
    Hettyey A; Vincze K; Zsarnóczai S; Hoi H; Laurila A
    J Evol Biol; 2011 May; 24(5):1007-19. PubMed ID: 21332859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity or fixed adaptive traits? Strategies for predation avoidance in Rana arvalis tadpoles.
    Lardner B
    Oecologia; 1998 Nov; 117(1-2):119-126. PubMed ID: 28308477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opposite and synergistic physiological responses to water acidity and predator cues in spadefoot toad tadpoles.
    Florencio M; Burraco P; Rendón MÁ; Díaz-Paniagua C; Gomez-Mestre I
    Comp Biochem Physiol A Mol Integr Physiol; 2020 Apr; 242():110654. PubMed ID: 31926298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predator mediated selection and the impact of developmental stage on viability in wood frog tadpoles (Rana sylvatica).
    Calsbeek R; Kuchta S
    BMC Evol Biol; 2011 Dec; 11():353. PubMed ID: 22151372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.