These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 24553938)

  • 41. Changes in neurofilament transport coincide temporally with alterations in the caliber of axons in regenerating motor fibers.
    Hoffman PN; Thompson GW; Griffin JW; Price DL
    J Cell Biol; 1985 Oct; 101(4):1332-40. PubMed ID: 2413041
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Visualization of slow axonal transport in vivo.
    Terada S; Nakata T; Peterson AC; Hirokawa N
    Science; 1996 Aug; 273(5276):784-8. PubMed ID: 8670416
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neurofilament heavy chain side arm phosphorylation regulates axonal transport of neurofilaments.
    Ackerley S; Thornhill P; Grierson AJ; Brownlees J; Anderton BH; Leigh PN; Shaw CE; Miller CC
    J Cell Biol; 2003 May; 161(3):489-95. PubMed ID: 12743103
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A mechanism for neurofilament transport acceleration through nodes of Ranvier.
    Ciocanel MV; Jung P; Brown A
    Mol Biol Cell; 2020 Mar; 31(7):640-654. PubMed ID: 32023144
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Slowing of neurofilament transport and the radial growth of developing nerve fibers.
    Hoffman PN; Griffin JW; Gold BG; Price DL
    J Neurosci; 1985 Nov; 5(11):2920-9. PubMed ID: 2414416
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Control of axonal caliber by neurofilament transport.
    Hoffman PN; Griffin JW; Price DL
    J Cell Biol; 1984 Aug; 99(2):705-14. PubMed ID: 6204997
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Axotomy-induced alterations in the synthesis and transport of neurofilaments and microtubules in dorsal root ganglion cells.
    Oblinger MM; Lasek RJ
    J Neurosci; 1988 May; 8(5):1747-58. PubMed ID: 3130470
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphorylation-related immunoreactivity and the rate of transport of neurofilaments in chronic 2,5-hexanedione intoxication.
    Watson DF; Fittro KP; Hoffman PN; Griffin JW
    Brain Res; 1991 Jan; 539(1):103-9. PubMed ID: 1707736
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deleting the phosphorylated tail domain of the neurofilament heavy subunit does not alter neurofilament transport rate in vivo.
    Yuan A; Nixon RA; Rao MV
    Neurosci Lett; 2006 Jan; 393(2-3):264-8. PubMed ID: 16266786
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neurofilaments can undergo axonal transport and cytoskeletal incorporation in a discontinuous manner.
    Chan WK; Yabe JT; Pimenta AF; Ortiz D; Shea TB
    Cell Motil Cytoskeleton; 2005 Nov; 62(3):166-79. PubMed ID: 16211584
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transport of neurofilaments in growing axons requires microtubules but not actin filaments.
    Francis F; Roy S; Brady ST; Black MM
    J Neurosci Res; 2005 Feb; 79(4):442-50. PubMed ID: 15635594
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Arrival, reversal, and departure of neurofilaments at the tips of growing axons.
    Uchida A; Brown A
    Mol Biol Cell; 2004 Sep; 15(9):4215-25. PubMed ID: 15215317
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Local control of neurofilament accumulation during radial growth of myelinating axons in vivo. Selective role of site-specific phosphorylation.
    Sánchez I; Hassinger L; Sihag RK; Cleveland DW; Mohan P; Nixon RA
    J Cell Biol; 2000 Nov; 151(5):1013-24. PubMed ID: 11086003
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinesin-mediated transport of neurofilament protein oligomers in growing axons.
    Yabe JT; Pimenta A; Shea TB
    J Cell Sci; 1999 Nov; 112 ( Pt 21)():3799-814. PubMed ID: 10523515
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neurofilament high molecular weight-green fluorescent protein fusion is normally expressed in neurons and transported in axons: a neuronal marker to investigate the biology of neurofilaments.
    Letournel F; Bocquet A; Perrot R; Dechaume A; Guinut F; Eyer J; Barthelaix A
    Neuroscience; 2006; 137(1):103-11. PubMed ID: 16289584
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oligodendroglia regulate the regional expansion of axon caliber and local accumulation of neurofilaments during development independently of myelin formation.
    Sánchez I; Hassinger L; Paskevich PA; Shine HD; Nixon RA
    J Neurosci; 1996 Aug; 16(16):5095-105. PubMed ID: 8756439
    [TBL] [Abstract][Full Text] [Related]  

  • 57. NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes.
    Chan JR; Watkins TA; Cosgaya JM; Zhang C; Chen L; Reichardt LF; Shooter EM; Barres BA
    Neuron; 2004 Jul; 43(2):183-91. PubMed ID: 15260955
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neurofilaments run sprints not marathons.
    Brady ST
    Nat Cell Biol; 2000 Mar; 2(3):E43-5. PubMed ID: 10707096
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Local control of axonal properties by Schwann cells: neurofilaments and axonal transport in homologous and heterologous nerve grafts.
    de Waegh SM; Brady ST
    J Neurosci Res; 1991 Sep; 30(1):201-12. PubMed ID: 1795404
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons.
    Yin X; Crawford TO; Griffin JW; Tu Ph; Lee VM; Li C; Roder J; Trapp BD
    J Neurosci; 1998 Mar; 18(6):1953-62. PubMed ID: 9482781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.