These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24553971)

  • 1. Application of the polynomial chaos expansion to approximate the homogenised response of the intervertebral disc.
    Karajan N; Otto D; Oladyshkin S; Ehlers W
    Biomech Model Mechanobiol; 2014 Oct; 13(5):1065-80. PubMed ID: 24553971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking continuous and discrete intervertebral disc models through homogenisation.
    Karajan N; Röhrle O; Ehlers W; Schmitt S
    Biomech Model Mechanobiol; 2013 Jun; 12(3):453-66. PubMed ID: 22872471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study on the mechanical behavior of intervertebral disc using hyperelastic finite element model.
    Xie F; Zhou H; Zhao W; Huang L
    Technol Health Care; 2017 Jul; 25(S1):177-187. PubMed ID: 28582905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.
    Maquer G; Laurent M; Brandejsky V; Pretterklieber ML; Zysset PK
    J Biomech Eng; 2014 Jun; 136(6):061003. PubMed ID: 24671515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method to design energy-conserving surrogate models for the coupled, nonlinear responses of intervertebral discs.
    Hammer M; Wenzel T; Santin G; Meszaros-Beller L; Little JP; Haasdonk B; Schmitt S
    Biomech Model Mechanobiol; 2024 Jun; 23(3):757-780. PubMed ID: 38244146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Material properties of bovine intervertebral discs across strain rates.
    Newell N; Grigoriadis G; Christou A; Carpanen D; Masouros SD
    J Mech Behav Biomed Mater; 2017 Jan; 65():824-830. PubMed ID: 27810728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical implementation of an osmo-poro-visco-hyperelastic finite element solver: application to the intervertebral disc.
    Castro APG; Alves JL
    Comput Methods Biomech Biomed Engin; 2021 Apr; 24(5):538-550. PubMed ID: 33111576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Considerations when loading spinal finite element models with predicted muscle forces from inverse static analyses.
    Zhu R; Zander T; Dreischarf M; Duda GN; Rohlmann A; Schmidt H
    J Biomech; 2013 Apr; 46(7):1376-8. PubMed ID: 23540724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations.
    Groth KM; Granata KP
    J Biomech Eng; 2008 Jun; 130(3):031005. PubMed ID: 18532854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element simulation of an artificial intervertebral disk using fiber reinforced laminated composite model.
    Shahmohammadi M; Asgharzadeh Shirazi H; Karimi A; Navidbakhsh M
    Tissue Cell; 2014 Oct; 46(5):299-303. PubMed ID: 24981720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intervertebral disc creep behavior assessment through an open source finite element solver.
    Castro AP; Wilson W; Huyghe JM; Ito K; Alves JL
    J Biomech; 2014 Jan; 47(1):297-301. PubMed ID: 24210477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades?
    Schmidt H; Galbusera F; Rohlmann A; Shirazi-Adl A
    J Biomech; 2013 Sep; 46(14):2342-55. PubMed ID: 23962527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osmoviscoelastic finite element model of the intervertebral disc.
    Schroeder Y; Wilson W; Huyghe JM; Baaijens FP
    Eur Spine J; 2006 Aug; 15 Suppl 3(Suppl 3):S361-71. PubMed ID: 16724211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs.
    MacLean JJ; Owen JP; Iatridis JC
    J Biomech; 2007; 40(1):55-63. PubMed ID: 16427060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load.
    Zirbel SA; Stolworthy DK; Howell LL; Bowden AE
    Spine J; 2013 Sep; 13(9):1134-47. PubMed ID: 23507531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanical response of the ovine lumbar anulus fibrosus to uniaxial, biaxial and shear loads.
    Little JP; Pearcy MJ; Tevelen G; Evans JH; Pettet G; Adam CJ
    J Mech Behav Biomed Mater; 2010 Feb; 3(2):146-57. PubMed ID: 20129414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combined numerical and experimental technique for estimation of the forces and moments in the lumbar intervertebral disc.
    Wang S; Park WM; Gadikota HR; Miao J; Kim YH; Wood KB; Li G
    Comput Methods Biomech Biomed Engin; 2013; 16(12):1278-86. PubMed ID: 22551235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical behaviour of annulus fibrosus tissue: identification of a poro-hyper-elastic model from experimental measurements.
    Baldit A; Ambard D; Cherblanc F; Royer P
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():280-1. PubMed ID: 23923942
    [No Abstract]   [Full Text] [Related]  

  • 20. Creep bulging deformation of intervertebral disc under axial compression.
    Pei BQ; Li H; Li DY; Fan YB; Wang C; Wu SQ
    Biomed Mater Eng; 2014; 24(1):191-8. PubMed ID: 24211898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.