BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 24554190)

  • 1. The interaction of gold and silver nanoparticles with a range of anionic and cationic dyes.
    Kitching H; Kenyon AJ; Parkin IP
    Phys Chem Chem Phys; 2014 Apr; 16(13):6050-9. PubMed ID: 24554190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction between gold nanoparticles and cationic and anionic dyes: enhanced UV-visible absorption.
    Narband N; Uppal M; Dunnill CW; Hyett G; Wilson M; Parkin IP
    Phys Chem Chem Phys; 2009 Nov; 11(44):10513-8. PubMed ID: 19890539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts.
    MeenaKumari M; Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():632-8. PubMed ID: 25128675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A controlled and reproducible pathway to dye-tagged, encapsulated silver nanoparticles as substrates for SERS multiplexing.
    Brown LO; Doorn SK
    Langmuir; 2008 Mar; 24(6):2277-80. PubMed ID: 18278969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile one-pot synthesis of gold and silver nanocatalysts using edible coconut oil.
    Meena Kumari M; Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():154-60. PubMed ID: 23624042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic alloying of preformed gold and silver nanoparticles.
    Radziuk DV; Zhang W; Shchukin D; Möhwald H
    Small; 2010 Feb; 6(4):545-53. PubMed ID: 20108230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photochemical induced growth and aggregation of metal nanoparticles in diode-array spectrophotometer via excited dimethyl-sulfoxide.
    Zidki T; Cohen H; Meyerstein D
    Phys Chem Chem Phys; 2010 Oct; 12(39):12862-7. PubMed ID: 20820594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on adsorption of mono- and multi-chromophoric hemicyanine dyes on silver nanoparticles by surface-enhanced resonance Raman and theoretical calculations.
    Biswas N; Thomas S; Kapoor S; Mishra A; Wategaonkar S; Mukherjee T
    J Chem Phys; 2008 Nov; 129(18):184702. PubMed ID: 19045418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biopolymer capped silver nanoparticles with potential for multifaceted applications.
    Vanamudan A; Sudhakar PP
    Int J Biol Macromol; 2016 May; 86():262-8. PubMed ID: 26800899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles.
    Philip D; Unni C; Aromal SA; Vidhu VK
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):899-904. PubMed ID: 21215687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method.
    Gorup LF; Longo E; Leite ER; Camargo ER
    J Colloid Interface Sci; 2011 Aug; 360(2):355-8. PubMed ID: 21616500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation and interaction of cationic nanoparticles on bacterial surfaces.
    Hayden SC; Zhao G; Saha K; Phillips RL; Li X; Miranda OR; Rotello VM; El-Sayed MA; Schmidt-Krey I; Bunz UH
    J Am Chem Soc; 2012 Apr; 134(16):6920-3. PubMed ID: 22489570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles.
    Ahmad T; Wani IA; Manzoor N; Ahmed J; Asiri AM
    Colloids Surf B Biointerfaces; 2013 Jul; 107():227-34. PubMed ID: 23500733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ synthesis of water dispersible bovine serum albumin capped gold and silver nanoparticles and their cytocompatibility studies.
    Murawala P; Phadnis SM; Bhonde RR; Prasad BL
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):224-8. PubMed ID: 19570660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the effect of charge transfer enhancement in off resonance mode SERS via conjugation of the probe dye between silver nanoparticles and metal substrates.
    Selvakannan P; Ramanathan R; Plowman BJ; Sabri YM; Daima HK; O'Mullane AP; Bansal V; Bhargava SK
    Phys Chem Chem Phys; 2013 Aug; 15(31):12920-9. PubMed ID: 23812309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalization of silver and gold nanoparticles using amino acid conjugated bile salts with tunable longitudinal plasmon resonance.
    Kasthuri J; Rajendiran N
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):387-93. PubMed ID: 19577440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold plating of silver nanoparticles for superior stability and preserved plasmonic and sensing properties.
    Murshid N; Gourevich I; Coombs N; Kitaev V
    Chem Commun (Camb); 2013 Dec; 49(97):11355-7. PubMed ID: 24129495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-quantitative determination of cationic surfactants in aqueous solutions using gold nanoparticles as reporter probes.
    Kuong CL; Chen WY; Chen YC
    Anal Bioanal Chem; 2007 Mar; 387(6):2091-9. PubMed ID: 17242892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical stabilization of gold coated by silver core-shell nanoparticles via electron transfer.
    Shankar C; Dao AT; Singh P; Higashimine K; Mott DM; Maenosono S
    Nanotechnology; 2012 Jun; 23(24):245704. PubMed ID: 22641370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green biochemistry approach for synthesis of silver and gold nanoparticles using Ficus racemosa latex and their pH-dependent binding study with different amino acids using UV/Vis absorption spectroscopy.
    Tetgure SR; Borse AU; Sankapal BR; Garole VJ; Garole DJ
    Amino Acids; 2015 Apr; 47(4):757-65. PubMed ID: 25618751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.