These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 24554196)
1. Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device. Xu K; Tostado CP; Xu JH; Lu YC; Luo GS Lab Chip; 2014 Apr; 14(7):1357-66. PubMed ID: 24554196 [TBL] [Abstract][Full Text] [Related]
2. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas-liquid/liquid-liquid flows. Yue J; Rebrov EV; Schouten JC Lab Chip; 2014 May; 14(9):1632-49. PubMed ID: 24651271 [TBL] [Abstract][Full Text] [Related]
3. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel. Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185 [TBL] [Abstract][Full Text] [Related]
4. Pressure drop of slug flow in microchannels with increasing void fraction: experiment and modeling. Molla S; Eskin D; Mostowfi F Lab Chip; 2011 Jun; 11(11):1968-78. PubMed ID: 21512682 [TBL] [Abstract][Full Text] [Related]
5. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device. Li Y; Jain M; Ma Y; Nandakumar K Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic generation of uniform water droplets using gas as the continuous phase. Jiang K; Lu AX; Dimitrakopoulos P; DeVoe DL; Raghavan SR J Colloid Interface Sci; 2015 Jun; 448():275-9. PubMed ID: 25744861 [TBL] [Abstract][Full Text] [Related]
7. Hydrodynamic resistance of single confined moving drops in rectangular microchannels. Vanapalli SA; Banpurkar AG; van den Ende D; Duits MH; Mugele F Lab Chip; 2009 Apr; 9(7):982-90. PubMed ID: 19294311 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of double emulsion break-up in three phase glass capillary microfluidic devices. Nabavi SA; Gu S; Vladisavljević GT; Ekanem EE J Colloid Interface Sci; 2015 Jul; 450():279-287. PubMed ID: 25828435 [TBL] [Abstract][Full Text] [Related]
9. Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification. Nabavi SA; Vladisavljević GT; Bandulasena MV; Arjmandi-Tash O; Manović V J Colloid Interface Sci; 2017 Nov; 505():315-324. PubMed ID: 28601740 [TBL] [Abstract][Full Text] [Related]
10. Characterization of acoustic droplet formation in a microfluidic flow-focusing device. Cheung YN; Qiu H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066310. PubMed ID: 22304193 [TBL] [Abstract][Full Text] [Related]
11. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628 [TBL] [Abstract][Full Text] [Related]
12. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties. Xu JH; Luo GS; Li SW; Chen GG Lab Chip; 2006 Jan; 6(1):131-6. PubMed ID: 16372080 [TBL] [Abstract][Full Text] [Related]
13. Liquid-liquid phase separation: characterisation of a novel device capable of separating particle carrying multiphase flows. Castell OK; Allender CJ; Barrow DA Lab Chip; 2009 Feb; 9(3):388-96. PubMed ID: 19156287 [TBL] [Abstract][Full Text] [Related]
15. Lattice Boltzmann simulations of droplet formation during microchannel emulsification. van der Zwan E; van der Sman R; Schroën K; Boom R J Colloid Interface Sci; 2009 Jul; 335(1):112-22. PubMed ID: 19398107 [TBL] [Abstract][Full Text] [Related]
16. Determining phase diagrams of gas-liquid systems using a microfluidic PVT. Mostowfi F; Molla S; Tabeling P Lab Chip; 2012 Nov; 12(21):4381-7. PubMed ID: 22930353 [TBL] [Abstract][Full Text] [Related]
17. High inertial microfluidics for droplet generation in a flow-focusing geometry. Mastiani M; Seo S; Riou B; Kim M Biomed Microdevices; 2019 Jun; 21(3):50. PubMed ID: 31203430 [TBL] [Abstract][Full Text] [Related]
18. Dripping, Jetting and Regime Transition of Droplet Formation in a Buoyancy-Assisted Microfluidic Device. Shen C; Liu F; Wu L; Yu C; Yu W Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33121113 [TBL] [Abstract][Full Text] [Related]
19. Emulsion droplet formation in coflowing liquid streams. Chen Y; Wu L; Zhang C Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013002. PubMed ID: 23410421 [TBL] [Abstract][Full Text] [Related]
20. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Christopher GF; Noharuddin NN; Taylor JA; Anna SL Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036317. PubMed ID: 18851153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]