These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 24554239)

  • 21. Physicochemical properties of granulating liquids and their influence on microcrystalline cellulose pellets obtained by extrusion-spheronisation technology.
    Dreu R; Sirca J; Pintye-Hodi K; Burjan T; Planinsek O; Srcic S
    Int J Pharm; 2005 Mar; 291(1-2):99-111. PubMed ID: 15707736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The crystallite-gel-model for microcrystalline cellulose in wet-granulation, extrusion, and spheronization.
    Kleinebudde P
    Pharm Res; 1997 Jun; 14(6):804-9. PubMed ID: 9210201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of particle kinematics in spheronization via particle image velocimetry.
    Koester M; Thommes M
    Eur J Pharm Biopharm; 2013 Feb; 83(2):307-14. PubMed ID: 23000404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formulation and evaluation of mefenamic acid sustained release matrix pellets.
    Ibrahim MA
    Acta Pharm; 2013 Mar; 63(1):85-98. PubMed ID: 23482315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extrusion/spheronization--effect of moisture content and spheronization time on pellet characteristics.
    Iyer RM; Augsburger LL; Pope DG; Shah RD
    Pharm Dev Technol; 1996 Dec; 1(4):325-31. PubMed ID: 9552316
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differences in characteristics of pellets prepared by different pelletization methods.
    Häring A; Vetchý D; Janovská L; Krejcová K; Rabisková M
    Drug Dev Ind Pharm; 2008 Mar; 34(3):289-96. PubMed ID: 18363144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of kappa-carrageenan as alternative pelletisation aid to microcrystalline cellulose in extrusion/spheronisation. I. Influence of type and fraction of filler.
    Thommes M; Kleinebudde P
    Eur J Pharm Biopharm; 2006 May; 63(1):59-67. PubMed ID: 16326085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formulation of ranitidine pellets by extrusion-spheronization with little or no microcrystalline cellulose.
    Basit AW; Newton JM; Lacey LF
    Pharm Dev Technol; 1999; 4(4):499-505. PubMed ID: 10578503
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Powdered cellulose as excipient for extrusion-spheronization pellets of a cohesive hydrophobic drug.
    Alvarez L; Concheiro A; Gómez-Amoza JL; Souto C; Martínez-Pacheco R
    Eur J Pharm Biopharm; 2003 May; 55(3):291-5. PubMed ID: 12754003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Importance of the fraction of microcrystalline cellulose and spheronization speed on the properties of extruded pellets made from binary mixtures.
    Kleinebudde P; Schröder M; Schultz P; Müller BW; Waaler T; Nymo L
    Pharm Dev Technol; 1999 Aug; 4(3):397-404. PubMed ID: 10434285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of kappa-carrageenan as alternative pelletisation aid to microcrystalline cellulose in extrusion/spheronisation. II. Influence of drug and filler type.
    Thommes M; Kleinebudde P
    Eur J Pharm Biopharm; 2006 May; 63(1):68-75. PubMed ID: 16325384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of pellets via extrusion-spheronisation without the incorporation of microcrystalline cellulose: a critical review.
    Dukić-Ott A; Thommes M; Remon JP; Kleinebudde P; Vervaet C
    Eur J Pharm Biopharm; 2009 Jan; 71(1):38-46. PubMed ID: 18771727
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The preparation by extrusion/spheronization and the properties of pellets containing drugs, microcrystalline cellulose and glyceryl monostearate.
    Chatchawalsaisin J; Podczeck F; Newton JM
    Eur J Pharm Sci; 2005 Jan; 24(1):35-48. PubMed ID: 15626576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct pelletization in a rotary processor controlled by torque measurements. II: effects of changes in the content of microcrystalline cellulose.
    Kristensen J; Schaefer T; Kleinebudde P
    AAPS PharmSci; 2000; 2(3):E24. PubMed ID: 11741240
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Supramolecular elucidation of the quality attributes of microcrystalline cellulose and isomalt composite pellet cores.
    Antal I; Kállai N; Luhn O; Bernard J; Nagy ZK; Szabó B; Klebovich I; Zelkó R
    J Pharm Biomed Anal; 2013 Oct; 84():124-8. PubMed ID: 23827942
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Importance of wet packability of component particles in pellet formation.
    Sarkar S; Wong TW; Liew CV
    AAPS PharmSciTech; 2013 Sep; 14(3):1267-77. PubMed ID: 23955149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of model drugs on the preparation of pellets by extrusion/spheronization: II. Spheronization parameters.
    Tomer G; Podczeck F; Newton JM
    Int J Pharm; 2002 Jan; 231(1):107-19. PubMed ID: 11719019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of surfactant HLB and oil/surfactant ratio on the formation and properties of self-emulsifying pellets and microemulsion reconstitution.
    Matsaridou I; Barmpalexis P; Salis A; Nikolakakis I
    AAPS PharmSciTech; 2012 Dec; 13(4):1319-30. PubMed ID: 23054984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of the degree of polymerization on the behavior of cellulose during homogenization and extrusion/spheronization.
    Kleinebudde P; Jumaa M; El Saleh F
    AAPS PharmSci; 2000; 2(3):E21. PubMed ID: 11741237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fibrillated Cellulose via High Pressure Homogenization: Analysis and Application for Orodispersible Films.
    Lenhart V; Quodbach J; Kleinebudde P
    AAPS PharmSciTech; 2019 Dec; 21(1):33. PubMed ID: 31863201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.