These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 24554515)

  • 1. An antiaromatic electrode-active material enabling high capacity and stable performance of rechargeable batteries.
    Shin JY; Yamada T; Yoshikawa H; Awaga K; Shinokubo H
    Angew Chem Int Ed Engl; 2014 Mar; 53(12):3096-101. PubMed ID: 24554515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system.
    Li H; Wang Y; Na H; Liu H; Zhou H
    J Am Chem Soc; 2009 Oct; 131(42):15098-9. PubMed ID: 19803514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Hydrogenation on the Contest between Aromaticity and Antiaromaticity in Norcorrole.
    Karadakov PB; Riley T
    Chemistry; 2023 Feb; 29(12):e202203400. PubMed ID: 36436122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis-microstructure-performance relationship of layered transition metal oxides as cathode for rechargeable sodium batteries prepared by high-temperature calcination.
    Xie M; Luo R; Lu J; Chen R; Wu F; Wang X; Zhan C; Wu H; Albishri HM; Al-Bogami AS; El-Hady DA; Amine K
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17176-83. PubMed ID: 25192293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode.
    Zhu LM; Lei AW; Cao YL; Ai XP; Yang HX
    Chem Commun (Camb); 2013 Jan; 49(6):567-9. PubMed ID: 23212556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-Organic Rechargeable Battery with Reversibility Supported by "Water-in-Salt" Electrolyte.
    Dong X; Yu H; Ma Y; Bao JL; Truhlar DG; Wang Y; Xia Y
    Chemistry; 2017 Feb; 23(11):2560-2565. PubMed ID: 28075043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible binder-free metal fibril mat-supported silicon anode for high-performance lithium-ion batteries.
    Song S; Kim SW; Lee DJ; Lee YG; Kim KM; Kim CH; Park JK; Lee YM; Cho KY
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11544-9. PubMed ID: 25020188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the Chemistry of Organonitrogen Compounds for Promoting All-Organic Anionic Rechargeable Batteries.
    Jouhara A; Quarez E; Dolhem F; Armand M; Dupré N; Poizot P
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15680-15684. PubMed ID: 31429162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symmetric All-Organic Battery Containing a Dual Redox-Active Polymer as Cathode and Anode Material.
    Casado N; Mantione D; Shanmukaraj D; Mecerreyes D
    ChemSusChem; 2020 May; 13(9):2464-2470. PubMed ID: 31643146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox-Active Porous Organic Polymers as Novel Electrode Materials for Green Rechargeable Sodium-Ion Batteries.
    Weeraratne KS; Alzharani AA; El-Kaderi HM
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23520-23526. PubMed ID: 31180204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous cobalt-manganese oxide nanocubes derived from metal organic frameworks as a cathode catalyst for rechargeable Li-O2 batteries.
    Zhang J; Wang L; Xu L; Ge X; Zhao X; Lai M; Liu Z; Chen W
    Nanoscale; 2015 Jan; 7(2):720-6. PubMed ID: 25429438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity.
    Nokami T; Matsuo T; Inatomi Y; Hojo N; Tsukagoshi T; Yoshizawa H; Shimizu A; Kuramoto H; Komae K; Tsuyama H; Yoshida J
    J Am Chem Soc; 2012 Dec; 134(48):19694-700. PubMed ID: 23130634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic Behavior of Active Materials Inside a TCNQ-Based Lithium-Ion Rechargeable Battery by in Situ 2D ESR Measurements.
    Kanzaki Y; Mitani S; Shiomi D; Morita Y; Takui T; Sato K
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43631-43640. PubMed ID: 30461254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organotrisulfide: A High Capacity Cathode Material for Rechargeable Lithium Batteries.
    Wu M; Cui Y; Bhargav A; Losovyj Y; Siegel A; Agarwal M; Ma Y; Fu Y
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):10027-31. PubMed ID: 27411083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biredox-Ionic Anthraquinone-Coupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for Li-Organic Batteries.
    Wang Z; Fan Q; Guo W; Yang C; Fu Y
    Adv Sci (Weinh); 2022 Jan; 9(1):e2103632. PubMed ID: 34716685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Engineering of Perylene Imides for High-Performance Lithium Batteries: Diels-Alder Extension and Chiral Dimerization.
    Li L; Hong YJ; Chen DY; Lin MJ
    Chemistry; 2017 Nov; 23(65):16612-16620. PubMed ID: 28967155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.