These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 24554608)

  • 1. Development of a low-cost polymethylmethacrylate stand-alone cervical cage: technical note.
    Brenke C; Pott P; Schwarz ML; Schmieder K; Barth M
    J Neurol Surg A Cent Eur Neurosurg; 2014 Jul; 75(4):317-22. PubMed ID: 24554608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The polymethyl methacrylate cervical cage for treatment of cervical disk disease Part III. Biomechanical properties.
    Chen JF; Lee ST
    Surg Neurol; 2006 Oct; 66(4):367-70; discussion 370. PubMed ID: 17015109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resistance of the lumbar spine against axial compression forces after implantation of three different posterior lumbar interbody cages.
    Krammer M; Dietl R; Lumenta CB; Kettler A; Wilke HJ; Büttner A; Claes L
    Acta Neurochir (Wien); 2001 Dec; 143(12):1217-22. PubMed ID: 11810385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Experimental fusion of the sheep cervical spine. Part I: Effect of cage design on interbody fusion].
    Kandziora F; Pflugmacher R; Scholz M; Schäfer J; Schollmeier G; Schnake KJ; Bail H; Duda G; Haas NP
    Chirurg; 2002 Sep; 73(9):909-17. PubMed ID: 12297957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of design and positioning of carbon fiber lumbar interbody cages and their subsidence in vertebral bodies.
    Lam FC; Alkalay R; Groff MW
    J Spinal Disord Tech; 2012 Apr; 25(2):116-22. PubMed ID: 21430566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Outcomes of contemporary use of rectangular titanium stand-alone cages in anterior cervical discectomy and fusion: cage subsidence and cervical alignment.
    Yamagata T; Takami T; Uda T; Ikeda H; Nagata T; Sakamoto S; Tsuyuguchi N; Ohata K
    J Clin Neurosci; 2012 Dec; 19(12):1673-8. PubMed ID: 23084624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complications in the use of rhBMP-2 in PEEK cages for interbody spinal fusions.
    Vaidya R; Sethi A; Bartol S; Jacobson M; Coe C; Craig JG
    J Spinal Disord Tech; 2008 Dec; 21(8):557-62. PubMed ID: 19057248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The design, preparation and compressive strength testing of interbody fusion cages made from a composite of multi-amino acid copolymer/tri-calcium phosphate].
    Zhou C; Song Y; Tu C; Pei F; Duan H; Liu L; Li H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Dec; 28(6):1136-40. PubMed ID: 22295701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of side holes in cervical fusion cages: a finite element analysis study.
    Aslani FJ; Hukins DW; Shepherd DE
    Proc Inst Mech Eng H; 2011 Oct; 225(10):986-92. PubMed ID: 22204120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study.
    Vadapalli S; Sairyo K; Goel VK; Robon M; Biyani A; Khandha A; Ebraheim NA
    Spine (Phila Pa 1976); 2006 Dec; 31(26):E992-8. PubMed ID: 17172990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyetheretherketone (PEEK) cage filled with cancellous allograft in anterior cervical discectomy and fusion.
    Liao JC; Niu CC; Chen WJ; Chen LH
    Int Orthop; 2008 Oct; 32(5):643-8. PubMed ID: 17639386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro fixator rod loading after transforaminal compared to anterior lumbar interbody fusion.
    Kettler A; Niemeyer T; Issler L; Merk U; Mahalingam M; Werner K; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):435-42. PubMed ID: 16442678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cell attracting composite of lumbar fusion cage.
    Gunay B; Hasirci N; Hasirci V
    J Biomater Sci Polym Ed; 2017 Jun; 28(8):749-767. PubMed ID: 28278042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and finite-element evaluation of a versatile assembled lumbar interbody fusion cage.
    Ding JY; Qian S; Wan L; Huang B; Wang LG; Zhou Y
    Arch Orthop Trauma Surg; 2010 Apr; 130(4):565-71. PubMed ID: 20140621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of a hollow polymethylmethacrylate cervical spacer with plating in the treatment of single level cervical disc disease.
    Chen JF; Wu CT; Lee ST
    Chang Gung Med J; 2009; 32(4):447-54. PubMed ID: 19664352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vertebroplasty comparing injectable calcium phosphate cement compared with polymethylmethacrylate in a unique canine vertebral body large defect model.
    Turner TM; Urban RM; Singh K; Hall DJ; Renner SM; Lim TH; Tomlinson MJ; An HS
    Spine J; 2008; 8(3):482-7. PubMed ID: 18455113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of multilevel cervical fusion with cages.
    Cho DY; Lee WY; Sheu PC
    Surg Neurol; 2004 Nov; 62(5):378-85, discussion 385-6. PubMed ID: 15518835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of posterior instrumentation following PLIF with BAK cages is most pronounced in weak bone.
    Pitzen T; Matthis D; Steudel WI
    Acta Neurochir (Wien); 2002 Feb; 144(2):121-8; discussion 128. PubMed ID: 11862511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-static loading of glass fiber-reinforced composite cervical fusion cage.
    Luoma J; Saarenpää I; Rinne J; Frantzén J; Moritz N; Vallittu PK
    J Mech Behav Biomed Mater; 2022 Dec; 136():105481. PubMed ID: 36206690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the compressive stiffness of spinal cages in various experimental conditions based on finite element analysis.
    Kim YH; Choi DK; Kim K
    Proc Inst Mech Eng H; 2012 Apr; 226(4):341-4. PubMed ID: 22611875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.