BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24554642)

  • 1. Engineering of p450pyr hydroxylase for the highly regio- and enantioselective subterminal hydroxylation of alkanes.
    Yang Y; Liu J; Li Z
    Angew Chem Int Ed Engl; 2014 Mar; 53(12):3120-4. PubMed ID: 24554642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolving P450pyr Monooxygenase for Regio- and Stereoselective Hydroxylations.
    Yang Y; Li Z
    Chimia (Aarau); 2015; 69(3):136-41. PubMed ID: 26507217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3.
    Peters MW; Meinhold P; Glieder A; Arnold FH
    J Am Chem Soc; 2003 Nov; 125(44):13442-50. PubMed ID: 14583039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolving P450pyr hydroxylase for highly enantioselective hydroxylation at non-activated carbon atom.
    Pham SQ; Pompidor G; Liu J; Li XD; Li Z
    Chem Commun (Camb); 2012 May; 48(38):4618-20. PubMed ID: 22430002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of recombinant E. coli cells co-expressing P450pyrTM monooxygenase and glucose dehydrogenase for highly regio- and stereoselective hydroxylation of alicycles with cofactor recycling.
    Pham SQ; Gao P; Li Z
    Biotechnol Bioeng; 2013 Feb; 110(2):363-73. PubMed ID: 22886996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving regio- and enantioselectivity of P450-catalyzed oxidative CH activation of small functionalized molecules by structure-guided directed evolution.
    Agudo R; Roiban GD; Reetz MT
    Chembiochem; 2012 Jul; 13(10):1465-73. PubMed ID: 22711296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolving P450pyr monooxygenase for highly regioselective terminal hydroxylation of n-butanol to 1,4-butanediol.
    Yang Y; Chi YT; Toh HH; Li Z
    Chem Commun (Camb); 2015 Jan; 51(5):914-7. PubMed ID: 25435422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altering the regioselectivity of cytochrome P450 CYP102A3 of Bacillus subtilis by using a new versatile assay system.
    Lentz O; Feenstra A; Habicher T; Hauer B; Schmid RD; Urlacher VB
    Chembiochem; 2006 Feb; 7(2):345-50. PubMed ID: 16381045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverting the enantioselectivity of P450pyr monooxygenase by directed evolution.
    Tang WL; Li Z; Zhao H
    Chem Commun (Camb); 2010 Aug; 46(30):5461-3. PubMed ID: 20520890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening of a minimal enriched P450 BM3 mutant library for hydroxylation of cyclic and acyclic alkanes.
    Weber E; Seifert A; Antonovici M; Geinitz C; Pleiss J; Urlacher VB
    Chem Commun (Camb); 2011 Jan; 47(3):944-6. PubMed ID: 21079837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regioselective ω-hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp. strain JS666.
    Scheps D; Malca SH; Hoffmann H; Nestl BM; Hauer B
    Org Biomol Chem; 2011 Oct; 9(19):6727-33. PubMed ID: 21837346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocatalytic route to chiral acyloins: P450-catalyzed regio- and enantioselective α-hydroxylation of ketones.
    Agudo R; Roiban GD; Lonsdale R; Ilie A; Reetz MT
    J Org Chem; 2015 Jan; 80(2):950-6. PubMed ID: 25495724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective hydroxylation of alkanes by an extracellular fungal peroxygenase.
    Peter S; Kinne M; Wang X; Ullrich R; Kayser G; Groves JT; Hofrichter M
    FEBS J; 2011 Oct; 278(19):3667-75. PubMed ID: 21812933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of colorimetric HTS assay of cytochrome p450 for ortho-specific hydroxylation, and engineering of CYP102D1 with enhanced catalytic activity and regioselectivity.
    Choi KY; Jung EO; Yun H; Yang YH; Kazlauskas RJ; Kim BG
    Chembiochem; 2013 Jul; 14(10):1231-8. PubMed ID: 23780920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase.
    Glieder A; Farinas ET; Arnold FH
    Nat Biotechnol; 2002 Nov; 20(11):1135-9. PubMed ID: 12368811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselective Benzylic Hydroxylation Catalysed by P450 Monooxygenases: Characterisation of a P450cam Mutant Library and Molecular Modelling.
    Eichler A; Gricman Ł; Herter S; Kelly PP; Turner NJ; Pleiss J; Flitsch SL
    Chembiochem; 2016 Mar; 17(5):426-32. PubMed ID: 26698167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does the TauD enzyme always hydroxylate alkanes, while an analogous synthetic non-heme reagent always desaturates them?
    Usharani D; Janardanan D; Shaik S
    J Am Chem Soc; 2011 Jan; 133(2):176-9. PubMed ID: 21171573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regiodivergent and Enantioselective Hydroxylation of C-H bonds by Synergistic Use of Protein Engineering and Exogenous Dual-Functional Small Molecules.
    Chen J; Dong S; Fang W; Jiang Y; Chen Z; Qin X; Wang C; Zhou H; Jin L; Feng Y; Wang B; Cong Z
    Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202215088. PubMed ID: 36417593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double site saturation mutagenesis of the human cytochrome P450 2D6 results in regioselective steroid hydroxylation.
    Geier M; Braun A; Fladischer P; Stepniak P; Rudroff F; Hametner C; Mihovilovic MD; Glieder A
    FEBS J; 2013 Jul; 280(13):3094-108. PubMed ID: 23552177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering P450 Peroxygenase to Catalyze Highly Enantioselective Epoxidation of cis-β-Methylstyrenes.
    Zhang C; Liu PX; Huang LY; Wei SP; Wang L; Yang SY; Yu XQ; Pu L; Wang Q
    Chemistry; 2016 Jul; 22(31):10969-75. PubMed ID: 27362319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.