BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24554718)

  • 1. Lens crystallin modifications and cataract in transgenic mice overexpressing acylpeptide hydrolase.
    Santhoshkumar P; Xie L; Raju M; Reneker L; Sharma KK
    J Biol Chem; 2014 Mar; 289(13):9039-52. PubMed ID: 24554718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significance of interactions of low molecular weight crystallin fragments in lens aging and cataract formation.
    Santhoshkumar P; Udupa P; Murugesan R; Sharma KK
    J Biol Chem; 2008 Mar; 283(13):8477-85. PubMed ID: 18227073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profiling of lens protease involved in generation of αA-66-80 crystallin peptide using an internally quenched protease substrate.
    Hariharapura R; Santhoshkumar P; Krishna Sharma K
    Exp Eye Res; 2013 Apr; 109():51-9. PubMed ID: 23410823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The common modification in alphaA-crystallin in the lens, N101D, is associated with increased opacity in a mouse model.
    Gupta R; Asomugha CO; Srivastava OP
    J Biol Chem; 2011 Apr; 286(13):11579-92. PubMed ID: 21245144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autophagy and UPR in alpha-crystallin mutant knock-in mouse models of hereditary cataracts.
    Andley UP; Goldman JW
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):234-9. PubMed ID: 26071686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cataractogenesis in transgenic mice containing the HIV-1 protease linked to the lens alpha A-crystallin promoter.
    Tumminia SJ; Jonak GJ; Focht RJ; Cheng YS; Russell P
    J Biol Chem; 1996 Jan; 271(1):425-31. PubMed ID: 8550598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on trypsin-modified bovine and human lens acylpeptide hydrolase.
    Senthilkumar R; Reddy PN; Sharma KK
    Exp Eye Res; 2001 Mar; 72(3):301-10. PubMed ID: 11180979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human βA3/A1-crystallin splicing mutation causes cataracts by activating the unfolded protein response and inducing apoptosis in differentiating lens fiber cells.
    Ma Z; Yao W; Chan CC; Kannabiran C; Wawrousek E; Hejtmancik JF
    Biochim Biophys Acta; 2016 Jun; 1862(6):1214-27. PubMed ID: 26851658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of αA-crystallin-derived αA66-80 peptide in guinea pig lens crystallin aggregation and insolubilization.
    Raju M; Mooney BP; Thakkar KM; Giblin FJ; Schey KL; Sharma KK
    Exp Eye Res; 2015 Mar; 132():151-60. PubMed ID: 25639202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. αA-crystallin peptide SDRDKFVIFLDVKHF accumulating in aging lens impairs the function of α-crystallin and induces lens protein aggregation.
    Santhoshkumar P; Raju M; Sharma KK
    PLoS One; 2011 Apr; 6(4):e19291. PubMed ID: 21552534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach.
    Su SP; McArthur JD; Andrew Aquilina J
    Exp Eye Res; 2010 Jul; 91(1):97-103. PubMed ID: 20433829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of rat lens.
    David LL; Azuma M; Shearer TR
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):785-93. PubMed ID: 8125740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence analysis of lens beta-crystallins suggests involvement of calpain in cataract formation.
    David LL; Shearer TR; Shih M
    J Biol Chem; 1993 Jan; 268(3):1937-40. PubMed ID: 8420967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transgenic mouse model for human autosomal dominant cataract.
    Hsu CD; Kymes S; Petrash JM
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2036-44. PubMed ID: 16639013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three distinct stages of lens opacification in transgenic mice expressing the HIV-1 protease.
    Tumminia SJ; Clark JI; Richiert DM; Mitton KP; Duglas-Tabor Y; Kowalak JA; Garland DL; Russell P
    Exp Eye Res; 2001 Feb; 72(2):115-21. PubMed ID: 11161727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of human γC-crystallin 5 bp duplication disrupts lens morphology in transgenic mice.
    Ma Z; Yao W; Theendakara V; Chan CC; Wawrousek E; Hejtmancik JF
    Invest Ophthalmol Vis Sci; 2011 Jul; 52(8):5369-75. PubMed ID: 21436266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H
    Hernebring M; Adelöf J; Wiseman J; Petersen A; Zetterberg M
    Exp Eye Res; 2021 Feb; 203():108395. PubMed ID: 33310056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imbalances in the eye lens proteome are linked to cataract formation.
    Schmid PWN; Lim NCH; Peters C; Back KC; Bourgeois B; Pirolt F; Richter B; Peschek J; Puk O; Amarie OV; Dalke C; Haslbeck M; Weinkauf S; Madl T; Graw J; Buchner J
    Nat Struct Mol Biol; 2021 Feb; 28(2):143-151. PubMed ID: 33432246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the changes in gene expression due to α-crystallin mutations in mouse models of hereditary human cataract.
    Andley UP; Tycksen E; McGlasson-Naumann BN; Hamilton PD
    PLoS One; 2018; 13(1):e0190817. PubMed ID: 29338044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related cleavages of crystallins in human lens cortical fiber cells generate a plethora of endogenous peptides and high molecular weight complexes.
    Su SP; Song X; Xavier D; Aquilina JA
    Proteins; 2015 Oct; 83(10):1878-86. PubMed ID: 26238763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.