These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 24554741)
1. Evidence for proteomic and metabolic adaptations associated with alterations of seed yield and quality in sulfur-limited Brassica napus L. D'Hooghe P; Dubousset L; Gallardo K; Kopriva S; Avice JC; Trouverie J Mol Cell Proteomics; 2014 May; 13(5):1165-83. PubMed ID: 24554741 [TBL] [Abstract][Full Text] [Related]
2. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus. Ding LN; Guo XJ; Li M; Fu ZL; Yan SZ; Zhu KM; Wang Z; Tan XL Plant Cell Rep; 2019 Feb; 38(2):243-253. PubMed ID: 30535511 [TBL] [Abstract][Full Text] [Related]
3. Integration of proteomic and genomic approaches to dissect seed germination vigor in Brassica napus seeds differing in oil content. Gu J; Hou D; Li Y; Chao H; Zhang K; Wang H; Xiang J; Raboanatahiry N; Wang B; Li M BMC Plant Biol; 2019 Jan; 19(1):21. PubMed ID: 30634904 [TBL] [Abstract][Full Text] [Related]
4. Oil body proteins sequentially accumulate throughout seed development in Brassica napus. Jolivet P; Boulard C; Bellamy A; Valot B; d'Andréa S; Zivy M; Nesi N; Chardot T J Plant Physiol; 2011 Nov; 168(17):2015-20. PubMed ID: 21803444 [TBL] [Abstract][Full Text] [Related]
5. Shotgun proteomics of Brassica rapa seed proteins identifies vicilin as a major seed storage protein in the mature seed. Rahman M; Guo Q; Baten A; Mauleon R; Khatun A; Liu L; Barkla BJ PLoS One; 2021; 16(7):e0253384. PubMed ID: 34242257 [TBL] [Abstract][Full Text] [Related]
6. Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation. Liu H; Wang C; Komatsu S; He M; Liu G; Shen S J Proteomics; 2013 Oct; 91():23-40. PubMed ID: 23835435 [TBL] [Abstract][Full Text] [Related]
7. Metabolic Changes during Storage of Brassica napus Seeds under Moist Conditions and the Consequences for the Sensory Quality of the Resulting Virgin Oil. Bonte A; Schweiger R; Pons C; Wagner C; Brühl L; Matthäus B; Müller C J Agric Food Chem; 2017 Dec; 65(50):11073-11084. PubMed ID: 29205038 [TBL] [Abstract][Full Text] [Related]
8. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Tan H; Yang X; Zhang F; Zheng X; Qu C; Mu J; Fu F; Li J; Guan R; Zhang H; Wang G; Zuo J Plant Physiol; 2011 Jul; 156(3):1577-88. PubMed ID: 21562329 [TBL] [Abstract][Full Text] [Related]
9. Toward characterizing germination and early growth in the non-orthodox forest tree species Quercus ilex through complementary gel and gel-free proteomic analysis of embryo and seedlings. Romero-Rodríguez MC; Jorrín-Novo JV; Castillejo MA J Proteomics; 2019 Apr; 197():60-70. PubMed ID: 30408563 [TBL] [Abstract][Full Text] [Related]
10. Cellular Plasticity in Response to Suppression of Storage Proteins in the Rolletschek H; Schwender J; König C; Chapman KD; Romsdahl T; Lorenz C; Braun HP; Denolf P; Van Audenhove K; Munz E; Heinzel N; Ortleb S; Rutten T; McCorkle S; Borysyuk T; Guendel A; Shi H; Vander Auwermeulen M; Bourot S; Borisjuk L Plant Cell; 2020 Jul; 32(7):2383-2401. PubMed ID: 32358071 [TBL] [Abstract][Full Text] [Related]
11. Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.). Hatzig SV; Nuppenau JN; Snowdon RJ; Schießl SV BMC Plant Biol; 2018 Nov; 18(1):297. PubMed ID: 30470194 [TBL] [Abstract][Full Text] [Related]
12. Piriformospora indica promotes growth, seed yield and quality of Brassica napus L. Su ZZ; Wang T; Shrivastava N; Chen YY; Liu X; Sun C; Yin Y; Gao QK; Lou BG Microbiol Res; 2017 Jun; 199():29-39. PubMed ID: 28454707 [TBL] [Abstract][Full Text] [Related]
13. Effects of an antisense napin gene on seed storage compounds in transgenic Brassica napus seeds. Kohno-Murase J; Murase M; Ichikawa H; Imamura J Plant Mol Biol; 1994 Nov; 26(4):1115-24. PubMed ID: 7811970 [TBL] [Abstract][Full Text] [Related]
14. Dynamics and partitioning of the ionome in seeds and germinating seedlings of winter oilseed rape. Eggert K; von Wirén N Metallomics; 2013 Sep; 5(9):1316-25. PubMed ID: 23939714 [TBL] [Abstract][Full Text] [Related]
15. Embryo-specific reduction of ADP-Glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape. Vigeolas H; Möhlmann T; Martini N; Neuhaus HE; Geigenberger P Plant Physiol; 2004 Sep; 136(1):2676-86. PubMed ID: 15333758 [TBL] [Abstract][Full Text] [Related]
16. A proteomic analysis of Arabidopsis ribosomal phosphoprotein P1A mutant. Li B; Zheng L; Wang R; Xue C; Shen R; Lan P J Proteomics; 2022 Jun; 262():104594. PubMed ID: 35483651 [TBL] [Abstract][Full Text] [Related]
17. Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition in Brassica napus. Lian J; Lu X; Yin N; Ma L; Lu J; Liu X; Li J; Lu J; Lei B; Wang R; Chai Y Plant Sci; 2017 Jan; 254():32-47. PubMed ID: 27964783 [TBL] [Abstract][Full Text] [Related]
18. Shotgun label-free quantitative proteomics of water-deficit-stressed midmature peanut (Arachis hypogaea L.) seed. Kottapalli KR; Zabet-Moghaddam M; Rowland D; Faircloth W; Mirzaei M; Haynes PA; Payton P J Proteome Res; 2013 Nov; 12(11):5048-57. PubMed ID: 24094305 [TBL] [Abstract][Full Text] [Related]
19. Depressed expression of FAE1 and FAD2 genes modifies fatty acid profiles and storage compounds accumulation in Brassica napus seeds. Shi J; Lang C; Wang F; Wu X; Liu R; Zheng T; Zhang D; Chen J; Wu G Plant Sci; 2017 Oct; 263():177-182. PubMed ID: 28818373 [TBL] [Abstract][Full Text] [Related]
20. The native structure and composition of the cruciferin complex in Brassica napus. Nietzel T; Dudkina NV; Haase C; Denolf P; Semchonok DA; Boekema EJ; Braun HP; Sunderhaus S J Biol Chem; 2013 Jan; 288(4):2238-45. PubMed ID: 23192340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]