These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24554839)

  • 1. Analysis of biochemical variations and microRNA expression in wild ( Ipomoea campanulata ) and cultivated ( Jacquemontia pentantha ) species exposed to in vivo water stress.
    Ghorecha V; Patel K; Ingle S; Sunkar R; Krishnayya NS
    Physiol Mol Biol Plants; 2014 Jan; 20(1):57-67. PubMed ID: 24554839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA dynamics in a wild and cultivated species of Convolvulaceae exposed to drought stress.
    Ghorecha V; Zheng Y; Liu L; Sunkar R; Krishnayya NSR
    Physiol Mol Biol Plants; 2017 Apr; 23(2):291-300. PubMed ID: 28461718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa.
    Zhou L; Liu Y; Liu Z; Kong D; Duan M; Luo L
    J Exp Bot; 2010 Oct; 61(15):4157-68. PubMed ID: 20729483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA expression profiles in response to drought stress in Sorghum bicolor.
    Hamza NB; Sharma N; Tripathi A; Sanan-Mishra N
    Gene Expr Patterns; 2016 Mar; 20(2):88-98. PubMed ID: 26772909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miRNA-based drought regulation in wheat.
    Akdogan G; Tufekci ED; Uranbey S; Unver T
    Funct Integr Genomics; 2016 May; 16(3):221-33. PubMed ID: 26141043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico search and biological validation of microRNAs related to drought response in peach and almond.
    Esmaeili F; Shiran B; Fallahi H; Mirakhorli N; Budak H; Martínez-Gómez P
    Funct Integr Genomics; 2017 May; 17(2-3):189-201. PubMed ID: 27068847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and expression profiles of putative leaf growth related microRNAs in maize (Zea mays L.) hybrid ADA313.
    Aydinoglu F; Lucas SJ
    Gene; 2019 Mar; 690():57-67. PubMed ID: 30597233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water deficit down-regulates miR398 and miR408 in pea (Pisum sativum L.).
    Jovanović Ž; Stanisavljević N; Mikić A; Radović S; Maksimović V
    Plant Physiol Biochem; 2014 Oct; 83():26-31. PubMed ID: 25064597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and function prediction of iron-deficiency-responsive microRNAs in citrus leaves.
    Jin LF; Yarra R; Yin XX; Liu YZ; Cao HX
    3 Biotech; 2021 Mar; 11(3):121. PubMed ID: 33628708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep sequencing of maize small RNAs reveals a diverse set of microRNA in dry and imbibed seeds.
    Li D; Wang L; Liu X; Cui D; Chen T; Zhang H; Jiang C; Xu C; Li P; Li S; Zhao L; Chen H
    PLoS One; 2013; 8(1):e55107. PubMed ID: 23359822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of durum wheat microRNAs in leaf and root tissues.
    Fileccia V; Bertolini E; Ruisi P; Giambalvo D; Frenda AS; Cannarozzi G; Tadele Z; Crosatti C; Martinelli F
    Funct Integr Genomics; 2017 Sep; 17(5):583-598. PubMed ID: 28321518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some synthetic cyclitol derivatives alleviate the effect of water deficit in cultivated and wild-type chickpea species.
    Çevik S; Yıldızlı A; Yandım G; Göksu H; Gultekin MS; Güzel Değer A; Çelik A; Şimşek Kuş N; Ünyayar S
    J Plant Physiol; 2014 Jun; 171(10):807-16. PubMed ID: 24877672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of miRNAs and their target genes in He-Ne laser pretreated wheat seedlings exposed to drought stress.
    Qiu Z; He Y; Zhang Y; Guo J; Wang L
    Ecotoxicol Environ Saf; 2018 Nov; 164():611-617. PubMed ID: 30153643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots.
    Xu Z; Zhong S; Li X; Li W; Rothstein SJ; Zhang S; Bi Y; Xie C
    PLoS One; 2011; 6(11):e28009. PubMed ID: 22132192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miR398 and miR395 are involved in response to SO
    Li L; Yi H; Xue M; Yi M
    Ecotoxicology; 2017 Nov; 26(9):1181-1187. PubMed ID: 28819808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-deficit responsive microRNAs in the primary root growth zone of maize.
    Seeve CM; Sunkar R; Zheng Y; Liu L; Liu Z; McMullen M; Nelson S; Sharp RE; Oliver MJ
    BMC Plant Biol; 2019 Oct; 19(1):447. PubMed ID: 31651253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foliar application of glycinebetaine regulates soluble sugars and modulates physiological adaptations in sweet potato (Ipomoea batatas) under water deficit.
    Tisarum R; Theerawitaya C; Samphumphuang T; Singh HP; Cha-Um S
    Protoplasma; 2020 Jan; 257(1):197-211. PubMed ID: 31407117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological, micro-morphological and metabolomic analysis of grapevine (Vitis vinifera L.) leaf of plants under water stress.
    Ju YL; Yue XF; Zhao XF; Zhao H; Fang YL
    Plant Physiol Biochem; 2018 Sep; 130():501-510. PubMed ID: 30096685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miRNA expression patterns of Triticum dicoccoides in response to shock drought stress.
    Kantar M; Lucas SJ; Budak H
    Planta; 2011 Mar; 233(3):471-84. PubMed ID: 21069383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miRNAs associated with auxin signaling, stress response, and cellular activities mediate adventitious root formation in apple rootstocks.
    Li K; Liu Z; Xing L; Wei Y; Mao J; Meng Y; Bao L; Han M; Zhao C; Zhang D
    Plant Physiol Biochem; 2019 Jun; 139():66-81. PubMed ID: 30878839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.