These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24555451)

  • 1. Sample skewness as a statistical measurement of neuronal tuning sharpness.
    Samonds JM; Potetz BR; Lee TS
    Neural Comput; 2014 May; 26(5):860-906. PubMed ID: 24555451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binocular spatial phase tuning characteristics of neurons in the macaque striate cortex.
    Smith EL; Chino YM; Ni J; Ridder WH; Crawford ML
    J Neurophysiol; 1997 Jul; 78(1):351-65. PubMed ID: 9242285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of the responses of V1 neurons to horizontal disparity in dynamic random-dot stereograms.
    Prince SJ; Pointon AD; Cumming BG; Parker AJ
    J Neurophysiol; 2002 Jan; 87(1):191-208. PubMed ID: 11784742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning for shape dimensions in macaque inferior temporal cortex.
    Kayaert G; Biederman I; Op de Beeck HP; Vogels R
    Eur J Neurosci; 2005 Jul; 22(1):212-24. PubMed ID: 16029211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. V1 orientation plasticity is explained by broadly tuned feedforward inputs and intracortical sharpening.
    Teich AF; Qian N
    Vis Neurosci; 2010 Mar; 27(1-2):57-73. PubMed ID: 20394682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recurrent connectivity can account for the dynamics of disparity processing in V1.
    Samonds JM; Potetz BR; Tyler CW; Lee TS
    J Neurosci; 2013 Feb; 33(7):2934-46. PubMed ID: 23407952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disparity-based coding of three-dimensional surface orientation by macaque middle temporal neurons.
    Nguyenkim JD; DeAngelis GC
    J Neurosci; 2003 Aug; 23(18):7117-28. PubMed ID: 12904472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-Free Estimation of Tuning Curves and Their Attentional Modulation, Based on Sparse and Noisy Data.
    Helmer M; Kozyrev V; Stephan V; Treue S; Geisel T; Battaglia D
    PLoS One; 2016; 11(1):e0146500. PubMed ID: 26785378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-unit activity in cortical area MST associated with disparity-vergence eye movements: evidence for population coding.
    Takemura A; Inoue Y; Kawano K; Quaia C; Miles FA
    J Neurophysiol; 2001 May; 85(5):2245-66. PubMed ID: 11353039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination of orientation and position disparities by binocularly activated neurons in cat straite cortex.
    Nelson JI; Kato H; Bishop PO
    J Neurophysiol; 1977 Mar; 40(2):260-83. PubMed ID: 845623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation selectivity in macaque V1: diversity and laminar dependence.
    Ringach DL; Shapley RM; Hawken MJ
    J Neurosci; 2002 Jul; 22(13):5639-51. PubMed ID: 12097515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Range and mechanism of encoding of horizontal disparity in macaque V1.
    Prince SJ; Cumming BG; Parker AJ
    J Neurophysiol; 2002 Jan; 87(1):209-21. PubMed ID: 11784743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response characteristics of the cells of cortical area 21a of the cat with special reference to orientation specificity.
    Wimborne BM; Henry GH
    J Physiol; 1992 Apr; 449():457-78. PubMed ID: 1522518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ocular dominance predicts neither strength nor class of disparity selectivity with random-dot stimuli in primate V1.
    Read JC; Cumming BG
    J Neurophysiol; 2004 Mar; 91(3):1271-81. PubMed ID: 14523074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coding of horizontal disparity and velocity by MT neurons in the alert macaque.
    DeAngelis GC; Uka T
    J Neurophysiol; 2003 Feb; 89(2):1094-111. PubMed ID: 12574483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning curve sharpening for orientation selectivity: coding efficiency and the impact of correlations.
    Seriès P; Latham PE; Pouget A
    Nat Neurosci; 2004 Oct; 7(10):1129-35. PubMed ID: 15452579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of local and global orientation and spatial frequency tuning in macaque V1.
    Xing D; Ringach DL; Shapley R; Hawken MJ
    J Physiol; 2004 Jun; 557(Pt 3):923-33. PubMed ID: 15090603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear and nonlinear contributions to orientation tuning of simple cells in the cat's striate cortex.
    Gardner JL; Anzai A; Ohzawa I; Freeman RD
    Vis Neurosci; 1999; 16(6):1115-21. PubMed ID: 10614591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vernier acuities of neurons in area 17 of cat visual cortex: their relation to stimulus length and velocity, orientation selectivity, and receptive-field structure.
    Swindale NV; Cynader MS
    Vis Neurosci; 1989; 2(2):165-76. PubMed ID: 2487645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Center-surround interactions in the middle temporal visual area of the owl monkey.
    Born RT
    J Neurophysiol; 2000 Nov; 84(5):2658-69. PubMed ID: 11068007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.