BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24555519)

  • 1. Structure based design, synthesis, pharmacophore modeling, virtual screening, and molecular docking studies for identification of novel cyclophilin D inhibitors.
    Valasani KR; Vangavaragu JR; Day VW; Yan SS
    J Chem Inf Model; 2014 Mar; 54(3):902-12. PubMed ID: 24555519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New cyclophilin D inhibitor rescues mitochondrial and cognitive function in Alzheimer's disease.
    Samanta S; Akhter F; Roy A; Chen D; Turner B; Wang Y; Clemente N; Wang C; Swerdlow RH; Battaile KP; Lovell S; Yan SF; Yan SS
    Brain; 2024 May; 147(5):1710-1725. PubMed ID: 38146639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration.
    Rao VK; Carlson EA; Yan SS
    Biochim Biophys Acta; 2014 Aug; 1842(8):1267-72. PubMed ID: 24055979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel cyclophilin D inhibitors derived from quinoxaline exhibit highly inhibitory activity against rat mitochondrial swelling and Ca2+ uptake/ release.
    Guo HX; Wang F; Yu KQ; Chen J; Bai DL; Chen KX; Shen X; Jiang HL
    Acta Pharmacol Sin; 2005 Oct; 26(10):1201-11. PubMed ID: 16174436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery and molecular basis of subtype-selective cyclophilin inhibitors.
    Peterson AA; Rangwala AM; Thakur MK; Ward PS; Hung C; Outhwaite IR; Chan AI; Usanov DL; Mootha VK; Seeliger MA; Liu DR
    Nat Chem Biol; 2022 Nov; 18(11):1184-1195. PubMed ID: 36163383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Checking the STEP-Associated Trafficking and Internalization of Glutamate Receptors for Reduced Cognitive Deficits: A Machine Learning Approach-Based Cheminformatics Study and Its Application for Drug Repurposing.
    Jamal S; Goyal S; Shanker A; Grover A
    PLoS One; 2015; 10(6):e0129370. PubMed ID: 26066505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QSAR Studies and Scaffold Optimization of Predicted Novel ACC 2 Inhibitors to Treat Metabolic Syndrome.
    Madan K; Paliwal S; Sharma S; Kesar S; Chauhan N; Madan M
    Curr Drug Discov Technol; 2024; 21(2):e010923220643. PubMed ID: 37680153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Identification of Potential Drug Candidates from Multi-Million Compounds' Repositories. Combination of 2D Similarity Search with 3D Ligand/Structure Based Methods and In Vitro Screening.
    Szilágyi K; Flachner B; Hajdú I; Szaszkó M; Dobi K; Lőrincz Z; Cseh S; Dormán G
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclophilin D: An Integrator of Mitochondrial Function.
    Amanakis G; Murphy E
    Front Physiol; 2020; 11():595. PubMed ID: 32625108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible role of amyloid-beta, adenine nucleotide translocase and cyclophilin-D interaction in mitochondrial dysfunction of Alzheimer's disease.
    Singh P; Suman S; Chandna S; Das TK
    Bioinformation; 2009 Aug; 3(10):440-5. PubMed ID: 19759867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repurposing strategies on pyridazinone-based series by pharmacophore- and structure-driven screening.
    Floresta G; Crocetti L; Giovannoni MP; Biagini P; Cilibrizzi A
    J Enzyme Inhib Med Chem; 2020 Dec; 35(1):1137-1144. PubMed ID: 32367744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Angiotensin-converting Enzyme 2 (ACE2) Inhibitors by Virtual Lead Optimization and Screening.
    Torres JE; Baldiris R; Vivas-Reyes R
    J Chin Chem Soc; 2012 Nov; 59(11):1394-1400. PubMed ID: 32336762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution crystal structures of two crystal forms of human cyclophilin D in complex with PEG 400 molecules.
    Valasani KR; Carlson EA; Battaile KP; Bisson A; Wang C; Lovell S; ShiDu Yan S
    Acta Crystallogr F Struct Biol Commun; 2014 Jun; 70(Pt 6):717-22. PubMed ID: 24915078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural mechanisms of cyclophilin D-dependent control of the mitochondrial permeability transition pore.
    Gutiérrez-Aguilar M; Baines CP
    Biochim Biophys Acta; 2015 Oct; 1850(10):2041-7. PubMed ID: 25445707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclophilin D and myocardial ischemia-reperfusion injury: a fresh perspective.
    Alam MR; Baetz D; Ovize M
    J Mol Cell Cardiol; 2015 Jan; 78():80-9. PubMed ID: 25281838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of cyclophilin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury.
    Kim SY; Shim MS; Kim KY; Weinreb RN; Wheeler LA; Ju WK
    Cell Death Dis; 2014 Mar; 5(3):e1105. PubMed ID: 24603333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles of a Pyrazolo-Pyridazine Derivative as Potential EGFR and CDK-2 Inhibitors: Design, Structure Determination, Anticancer Evaluation and In Silico Studies.
    Hashem HE; Amr AEE; Almehizia AA; Naglah AM; Kariuki BM; Eassa HA; Nossier ES
    Molecules; 2023 Oct; 28(21):. PubMed ID: 37959672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current and future therapeutic strategies for Alzheimer's disease: an overview of drug development bottlenecks.
    Peng Y; Jin H; Xue YH; Chen Q; Yao SY; Du MQ; Liu S
    Front Aging Neurosci; 2023; 15():1206572. PubMed ID: 37600514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacophore-based virtual screening approaches to identify novel molecular candidates against EGFR through comprehensive computational approaches and
    Opo FADM; Moulay M; Zari A; Alqaderi A; Alkarim S; Zari T; Bhuiyan MA; Mahmoud MM; Aljoud F; Suhail M; Edris S; Ramadan WS; Kamal MA; Nemmiche S; Ahammad F
    Front Pharmacol; 2022; 13():1027890. PubMed ID: 36457709
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.