These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1582 related articles for article (PubMed ID: 24555566)

  • 1. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms.
    Vera D; García-Díaz M; Torras N; Álvarez M; Villa R; Martinez E
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):13920-13933. PubMed ID: 33739812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies.
    Mohammadi MH; Heidary Araghi B; Beydaghi V; Geraili A; Moradi F; Jafari P; Janmaleki M; Valente KP; Akbari M; Sanati-Nezhad A
    Adv Healthc Mater; 2016 Oct; 5(19):2459-2480. PubMed ID: 27548388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Next generation human skin constructs as advanced tools for drug development.
    Abaci HE; Guo Z; Doucet Y; Jacków J; Christiano A
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1657-1668. PubMed ID: 28592171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic platforms for modeling biological barriers in the circulatory system.
    Yu F; Selva Kumar ND; Choudhury D; Foo LC; Ng SH
    Drug Discov Today; 2018 Apr; 23(4):815-829. PubMed ID: 29357288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes.
    Xie R; Liang Z; Ai Y; Zheng W; Xiong J; Xu P; Liu Y; Ding M; Gao J; Wang J; Liang Q
    Nat Protoc; 2021 Feb; 16(2):937-964. PubMed ID: 33318693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic systems for stem cell-based neural tissue engineering.
    Karimi M; Bahrami S; Mirshekari H; Basri SM; Nik AB; Aref AR; Akbari M; Hamblin MR
    Lab Chip; 2016 Jul; 16(14):2551-71. PubMed ID: 27296463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic technologies for vasculature biomimicry.
    Hu C; Chen Y; Tan MJA; Ren K; Wu H
    Analyst; 2019 Jul; 144(15):4461-4471. PubMed ID: 31162494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-microfluidics: biomaterials and biomimetic designs.
    Domachuk P; Tsioris K; Omenetto FG; Kaplan DL
    Adv Mater; 2010 Jan; 22(2):249-60. PubMed ID: 20217686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using chemistry and microfluidics to understand the spatial dynamics of complex biological networks.
    Kastrup CJ; Runyon MK; Lucchetta EM; Price JM; Ismagilov RF
    Acc Chem Res; 2008 Apr; 41(4):549-58. PubMed ID: 18217723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic 'brain-on chip' systems to supplement neurological practice: development, applications and considerations.
    Jarrah R; Nathani KR; Bhandarkar S; Ezeudu CS; Nguyen RT; Amare A; Aljameey UA; Jarrah SI; Bhandarkar AR; Fiani B
    Regen Med; 2023 May; 18(5):413-423. PubMed ID: 37125510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic-based platforms for cell-to-cell communication studies.
    Zhu L; Tang Q; Mao Z; Chen H; Wu L; Qin Y
    Biofabrication; 2023 Dec; 16(1):. PubMed ID: 38035370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating Immunology and Microfluidics for Single Immune Cell Analysis.
    Sinha N; Subedi N; Tel J
    Front Immunol; 2018; 9():2373. PubMed ID: 30459757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic techniques for development of 3D vascularized tissue.
    Hasan A; Paul A; Vrana NE; Zhao X; Memic A; Hwang YS; Dokmeci MR; Khademhosseini A
    Biomaterials; 2014 Aug; 35(26):7308-25. PubMed ID: 24906345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired Engineering of Organ-on-Chip Devices.
    Wang L; Li Z; Xu C; Qin J
    Adv Exp Med Biol; 2019; 1174():401-440. PubMed ID: 31713207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidics as a new tool in radiation biology.
    Lacombe J; Phillips SL; Zenhausern F
    Cancer Lett; 2016 Feb; 371(2):292-300. PubMed ID: 26704304
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 80.