These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 24555768)

  • 1. Wurtzite CuGaO2: a new direct and narrow band gap oxide semiconductor applicable as a solar cell absorber.
    Omata T; Nagatani H; Suzuki I; Kita M; Yanagi H; Ohashi N
    J Am Chem Soc; 2014 Mar; 136(9):3378-81. PubMed ID: 24555768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and thermal properties of ternary narrow-gap oxide semiconductor; wurtzite-derived β-CuGaO2.
    Nagatani H; Suzuki I; Kita M; Tanaka M; Katsuya Y; Sakata O; Miyoshi S; Yamaguchi S; Omata T
    Inorg Chem; 2015 Feb; 54(4):1698-704. PubMed ID: 25651414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wurtzite-Derived Quaternary Oxide Semiconductor Cu
    Kita M; Suzuki I; Ohashi N; Omata T
    Inorg Chem; 2017 Nov; 56(22):14277-14283. PubMed ID: 29083882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wurtzite-derived ternary I-III-O
    Omata T; Nagatani H; Suzuki I; Kita M
    Sci Technol Adv Mater; 2015 Apr; 16(2):024902. PubMed ID: 27877769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wurtzite CoO: a direct band gap oxide suitable for a photovoltaic absorber.
    Wang Y; Ge HX; Chen YP; Meng XY; Ghanbaja J; Horwat D; Pierson JF
    Chem Commun (Camb); 2018 Dec; 54(99):13949-13952. PubMed ID: 30474652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Si3AlP: a new promising material for solar cell absorber.
    Yang JH; Zhai Y; Liu H; Xiang H; Gong X; Wei SH
    J Am Chem Soc; 2012 Aug; 134(30):12653-7. PubMed ID: 22769022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Band-edge electronic structure of β-In2S3: the role of s or p orbitals of atoms at different lattice positions.
    Zhao Z; Cao Y; Yi J; He X; Ma C; Qiu J
    Chemphyschem; 2012 Apr; 13(6):1551-6. PubMed ID: 22419557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Direct Band Gap of β-CuGaO
    Suzuki I; Mizuno Y; Omata T
    Inorg Chem; 2019 Apr; 58(7):4262-4267. PubMed ID: 30875215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optoelectronic properties analysis of Ti-substituted GaP.
    Tablero C
    J Chem Phys; 2005 Nov; 123(18):184703. PubMed ID: 16292917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic and optical properties of silicon based porous sheets.
    Guo Y; Zhang S; Wang Q
    Phys Chem Chem Phys; 2014 Aug; 16(31):16832-6. PubMed ID: 25005914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-Principles Study of CuGaO2 Polymorphs: Delafossite α-CuGaO2 and Wurtzite β-CuGaO2.
    Suzuki I; Nagatani H; Kita M; Iguchi Y; Sato C; Yanagi H; Ohashi N; Omata T
    Inorg Chem; 2016 Aug; 55(15):7610-6. PubMed ID: 27438905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Origin of the Band Gap Anomaly of Quaternary Alloy Cd(x)Zn(1-x)S(y)Se(1-y) Nanowires, Nanobelts, and Nanosheets in the Visible Spectrum.
    Kwon SJ; Jeong HM; Jung K; Ko DH; Ko H; Han IK; Kim GT; Park JG
    ACS Nano; 2015 May; 9(5):5486-99. PubMed ID: 25897466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New crystal structure: synthesis and characterization of hexagonal wurtzite MnO.
    Nam KM; Kim YI; Jo Y; Lee SM; Kim BG; Choi R; Choi SI; Song H; Park JT
    J Am Chem Soc; 2012 May; 134(20):8392-5. PubMed ID: 22563802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defect Tolerant Semiconductors for Solar Energy Conversion.
    Zakutayev A; Caskey CM; Fioretti AN; Ginley DS; Vidal J; Stevanovic V; Tea E; Lany S
    J Phys Chem Lett; 2014 Apr; 5(7):1117-25. PubMed ID: 26274458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Band Gap Engineering in an Efficient Solar-Driven Interfacial Evaporation System.
    Ying P; Li M; Yu F; Geng Y; Zhang L; He J; Zheng Y; Chen R
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32880-32887. PubMed ID: 32589006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions.
    Chung I; Song JH; Im J; Androulakis J; Malliakas CD; Li H; Freeman AJ; Kenney JT; Kanatzidis MG
    J Am Chem Soc; 2012 May; 134(20):8579-87. PubMed ID: 22578072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO3, CuNbO3 and Cu5Ta11O30 materials.
    Harb M; Masih D; Takanabe K
    Phys Chem Chem Phys; 2014 Sep; 16(34):18198-204. PubMed ID: 25055167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards direct-gap silicon phases by the inverse band structure design approach.
    Xiang HJ; Huang B; Kan E; Wei SH; Gong XG
    Phys Rev Lett; 2013 Mar; 110(11):118702. PubMed ID: 25166584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Untangling the electronic band structure of wurtzite GaAs nanowires by resonant Raman spectroscopy.
    Ketterer B; Heiss M; Uccelli E; Arbiol J; i Morral AF
    ACS Nano; 2011 Sep; 5(9):7585-92. PubMed ID: 21838304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural Intermediate Band in I
    Liu Q; Cai Z; Han D; Chen S
    Sci Rep; 2018 Jan; 8(1):1604. PubMed ID: 29371660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.